Abstract:
Color screen consists of a blue luminescent layer containing a first luminescent material having a light emission in the range of 430-490 nm and a second luminescent material having a light emission in the range of 380-450 nm. Preferred Features: The first luminescent material is made of ZnS: Ag, BaMgAl10O17: Eu or (Ba, Sr, Ca)5(PO4)3Cl: Eu. The second luminescent material is made of LaOBr: Tb, Y2O2S: Tb, Y3Al5O12: Tb, Ca3(PO4)2: Eu, SR2P2O7: Eu, (Sr, Mg)2P2O7: Eu, CaSO4: Eu, CaO: Bi or (Y, Gd)BaO3: Ce.
Abstract:
A method includes obtaining an image of a region of interest of a subject, wherein the image is generated with image data produced by an imaging system used to scan the subject, obtaining a signal indicative of a physiological state of the subject before the scan, and displaying both the image and data indicative of the physiological state. In another aspect, a method includes correcting, via a processor, a tracer uptake value for a target region of interest based on a tracer uptake correction factor.
Abstract:
A method for radiotherapy monitoring is provided. The method comprises calculation of treatment-guiding indices of side-effects based on processing image derived descriptors and measurement values of selected disease specific biomarkers and optionally questionnaire data. A computer program product is also provided.
Abstract:
In a system for driving inertia-prone picture-reproducing devices, in particular liquid-crystal displays, in which a correcting value that depends on changes in the video signals from frame to frame is added to incoming video signals to compensate for the inertial effects and in which the corrected video signals are passed to the picture-reproducing device to form the correcting value, a model of the picture-reproducing device is provided that has a state variable as an output variable, the video signals as a first input variable and the state variable from a preceding frame as a second input variable. Furthermore, to derive the correcting value, a function having the incoming video signals and the state variable of the preceding variable as input variables and the corrected video signals as an output variable.
Abstract:
An apparatus comprises: a database (30) storing medical data including image medical data and non-image medical data for a plurality of patients; a digital processor (40) configured to (i) generate a features vector (56) comprising features indicative of a patient derived from patient medical data stored in the database including both patient image medical data and patient non-image medical data and (ii) perform multivariate analysis (64) on a features vector generated for a patient of interest to determine a proposed diagnosis for the patient of interest; and a user interface (42) configured to output a human perceptible representation of the proposed diagnosis for the patient of interest.
Abstract:
In a method and arrangement for correcting an arrangement for driving imagereproducing means subject to inertia, and particularly liquid crystal displays, wherein a stored correcting variable is added to infed video signals to compensate for the effects of inertia, which correcting variable depends on changes in the video signals from frame to frame, and wherein the corrected video signals are conveyed to the image-reproducing means, provision is made for a test pattern that contains signal jumps that occur from frame to frame to be generated, for the signal jumps to vary in respect of their sign, their size and their position in the amplitude range of the video signals, for the test video signals to be shown on the imagereproducing means at least in a part that is covered by at least one opto-electrical sensor, and for correcting parameters to be derived from the signals generated by the at least one optoelectrical sensor while taking account of the totality of the signals generated by the at least one opto-electrical sensor.
Abstract:
This invention relates to a method and a correction system for correcting tracer-uptake measurements for patient specific variations in the tracer-uptake. Input data are received about the patient and subsequently it is determining whether the received input data include tracer-impact data that impact the tracer-uptake measurements for the patient. In case the tracer-impact data are included in the input data a comparing is performed where the tracer-impact data are compared with pre-stored reference data that have associated thereto a correction indicator indicating an amount of deviation of the tracer-uptake measurement due to the tracer-uptake dependent data. The correction indicator of the pre-stored reference data that match with the tracer-impact data is then used to correct the tracer-uptake measurements for the patient.
Abstract:
A method allowing display of time-varying merged high resolution and low resolution image data with a smooth frame rate. In one embodiment the high resolution data is structural image data and the low resolution image data is functional image data. The functional image data is gathered (20) into groups and each group is rendered and merged (24) together. The merged images produced are then stored (28) in a First In First Out (FIFO) buffer for display. While the merged images are displayed the next set of functional image data is merged and rendered and supplied to the FIFO buffer, allowing a smooth frame rate to be achieved. A computer program and a medical imaging apparatus using the method are also disclosed.