Abstract:
A method for preparing tapered block copolymers in a polymerisation process by charging an initiator and monomers sequentially with one or more charges of first one of the monomers, then with a mixture of the two monomers, and then with one or more charges of the first monomer to produce a polymodal tapered block copolymer. Suitable monomers include conjugated dienes and monovinylaromatic compounds. The copolymers are particularly useful for applications requiring environmental stress crack resistance.
Abstract:
A method for preparing resinous copolymers by sequential charge copolymerization of at least two charges, at least one being a conjugated diene and at least one being a monovinylarene; followed by a charge of a polyfunctional coupling agent; and the final charge being an essentially difunctional coupling agent.
Abstract:
A method for preparing resinous copolymers by sequential charge copolymerization of at least two charges, at least one being a conjugated diene and at least one being a monovinylarene; followed by a charge of a polyfunctional coupling agent; and the final charge being an essentially difunctional coupling agent.
Abstract:
A method for preparing tapered block copolymers in a polymerization process by charging an initiator and monomers sequentially with one or more charges of first one of the monomers, then with a mixture of the two monomers, and then with one or more charges of the second monomer alternating with one or more charges of the first monomer to produce a polymodal tapered block copolymer. Suitable monomers include conjugated dienes and monovinylaromatic compounds. The copolymers are particularly useful for shrink film packaging applications.
Abstract:
Hydrogenated completely random conjugated diene/ monovinylarene copolymers with a conjugated diene content above about 50 weight percent, monovinylarene content below about 50 weight percent, vinyl unsaturation (normalized) at least about 25 weight percent, block polymonovinylarene below about 5 weight percent, and molecular weight M n in the range of about 30,000-200,000, are soluble in synthetic poly(α-olefin) lubricating oils providing therein effective viscosity index control, pour point, and shear loss at low concentrations.
Abstract:
Hydrogenated completely random conjugated diene/ monovinylarene copolymers with a conjugated diene content above about 50 weight percent, monovinylarene content below about 50 weight percent, vinyl unsaturation (normalized) at least about 25 weight percent, block polymonovinylarene below about 5 weight percent, and molecular weight M n in the range of about 30,000-200,000, are soluble in synthetic poly(α-olefin) lubricating oils providing therein effective viscosity index control, pour point, and shear loss at low concentrations.
Abstract:
A method for preparing tapered block copolymers in a polymerization process by sequentially charging: (1) an initiator and monovinylaromatic monomers in the presence of a randomizer; (2) an initiator and monovinylaromatic monomers; (3) a mixture of monovinylaromatic and conjugated diene monomers; (4) conjugated diene monomers; and (5) a coupling agent; to produce a polymodal tapered block copolymer. The copolymers are particularly useful for applications such as packaging and food or drink containers which require transparency and good environmental stress crack resistance.
Abstract:
Hydrogenated random block conjugated diene/monovinylarene copolymers with a terminal monovinylarene block having a diene content in the range of 44 to 70 weight percent, normalized vinyl in the range 30.2-51.3 percent, percent vinyl based on copolymer plus percent styrene in the range 59.8-71.5 percent, and molecular weight Mn in the range 94,000-199,000, used as viscosity index improver in lubricating oil, exhibits unusually high thickening power, yet provides viscosity index, pour point, and shear loss at very desirable levels.
Abstract:
Hydrogenated random block conjugated diene/monovinylarene copolymers with a terminal monovinylarene block having a diene content in the range of 44 to 70 weight percent, normalized vinyl in the range 30.2.-51.3 percent, percent vinyl based on copolymer plus percent styrene in the range 59.8-71.5 percent, and molecular weight M n in the range 94,000-199,000, used as viscosity index improver in lubricating oil, exhibits unusually high thickening power, yet provides viscosity index, pour point, and shear loss at very desirable levels.