Abstract:
A spectrometer comprises a tunable interferometer for producing a monochromatic continuous image at an image plane and including two mirrors (48) having substantially parallel surfaces and an adjustable spacing therebetween, a radiation detector (54) located at the image plane for recording the image, a filter arrangement (56) for allowing at least one predetermined range of wavelengths to pass to the detector, and a lens (50) arrangement for collecting radiation and limiting radiation incident on the interferometer to an angle which is substantially perpendicular to the substantially parallel surfaces of the two mirrors.
Abstract:
Submicron sized ceramic particles are produced by combining a ceramic precursor with an organic or carbonaceous carrier material, and exposing droplets of the mixture to a temperature sufficient to cause combustion of the organic material and subsequent vaporization and nucleation, or diffusion and oxidation, of the ceramic precursor to form pure, crystalline, uniform nanophase ceramic particles.
Abstract:
An apparatus provides high temperature and short residence time conditions for the production of nanoscale ceramic powders. The apparatus includes a confinement structure having multiple inclined surfaces for confining flame located between the surfaces so as to define a flame zone. A burner system employs one or more burners to provide flame to the flame zone. Each burner is located in the flame zone in close proximity to at least one of the inclined surfaces. A delivery system disposed adjacent the flame zone delivers an aerosol, comprising an organic or carbonaceous carrier material and a ceramic precursor, to the flame zone to expose the aerosol to a temperature sufficient to induce combustion of the carrier material and vaporization and nucleation, or diffusion and oxidation, of the ceramic precursor to form pure, crystalline, narrow size distribution, nanophase ceramic particles.
Abstract:
Disclosed is a system for regulating the efficiency of a combustion process by detecting radiant energy emitted from ash particles entrained in the gas stream exiting the combustion chamber of a boiler or incinerator. The intensity of selected wavelengths of light emitted from the particles is indicative of the temperature of the particles. The change in the intensities of the selected wavelengths of light, and thus of the temperature of the gas stream at the furnace exit, is monitored, and a feedback control mechanism is used to regulate one or more combustion, pollution control, or heat transfer parameters thereby maximizing the thermal efficiency of the combustion process in the boiler or incinerator.
Abstract:
Apparatus and methods for tracking a feature on a target surface and continually providing analog corrections to tracking mirrors in real time by utilizing a low-power incoherent tracking beam to detect the movements of a reference feature on the target and confocal reflectometry to monitor the reflection from the tracking beam's current position are described. The apparatus includes a dithering device for dithering the tracking beam in a first and a second direction with an oscillatory motion, a tracking device for controlling the position of a therapeutic beam relative to a target and for controlling the position of the tracking beam relative to a reference feature, a reflectometer for providing an output signal with a phase corresponding to a phase of the reflected tracking beam, and a signal processor for comparing the phase of the reflectometer output signal to the phases of the oscillatory motion and for controlling the tracking device so that the therapeutic beam to tracks relative to the reference feature.
Abstract:
A process for treating wastes contaminated by toxic metals and/or organic materials is disclosed. The process involves heating the metal-contaminated wastes to a temperature sufficient to volatilize the metals. This temperature is also high enough to destroy or volatilize organic contaminants. The metal vapors are contacted with a sorbent which is reactive with the metals and sequesters them, thereby forming a non-leachable complex which can be disposed as non-hazardous conventional waste.
Abstract:
A method for removing NOx, particularly nitrogen oxide emissions from the exhaust products of combustion processes is disclosed. An alkyl amine is added (18) to the stream of exhaust products at relatively low temperatures in the range of 350-650 °C (16). The alkyl amine does not require a catalyst to react with the nitrogen oxides at these temperatures. Monomethyl amine (CH3NH2) is particularly useful.
Abstract:
An active nitrogen energy transfer (ANET) system utilizing excitation to the Herman infrared spectrum and direct detection for rapid and sensitive analysis of materials for the presence of hydrocarbons, both chlorinated and non, heavy metals and transuranic compounds is disclosed. Samples to be analyzed are introduced into active nitrogen where only a few characteristic emissions are emitted. The ANET system is suitable for miniaturization because it is highly efficient, it can operate at atmospheric pressure, and it produces emission spectra that is simple to analyze. This ANET system has relatively high sensitivity to heavy metals compared with atomic absorption systems.
Abstract:
A microwave-driven plasma spraying apparatus can be utilized for uniform high-powered spraying. The plasma sprayer is constructed without a dielectric discharge tube, so very high microwave powers can be utilized. Moreover, the plasma sprayer is relatively free of contamination caused by deposits of heat-fusible material.
Abstract:
Method and apparatus for fracturing hard deposits (20, 110, 122) such as urinary and biliary stones and atherosclerotic plaque in the human body. A flexible guide (10, 40, 60, 84, 100) having a hard mass (12, 42, 64, 86, 104, 120) capping an end is adapted for insertion through a fluid passage in a living body. An energy source (22, 52, 74, 80) creates a rapid vapor expansion adjacent to the cap (12, 42, 64, 86, 104, 120) causing it to undergo a pulse like movement, imparting a high-velocity impulse to an adjacent deposit (30, 110, 122), thereby fracturing it. The energy source (22, 52, 74, 80) may be a laser (22) with a fiber optic (14) delivery system in the guide (10) terminating adjacent to the cap (12) to cause vaporization of the mass cap (12) to create the vapor expansion. The energy source (22, 52, 74, 80) may be a spark generator (52, 74, 80) with a conductor (46, 66, 82) associated with the guide (40, 60, 84, 100) to deliver a fluid vaporizing spark (126) adjacent to the mass cap (42, 64, 86, 104, 120). Other forms of rapid energy delivery such as chemical detonations or ballistic impact may also be applicable.