Abstract:
A system for determining a material property at an interface between a first layer and a second layer includes a transmitter outputting electromagnetic radiation to the sample, a receiver receiving electromagnetic radiation that was reflected by or transmitted though the sample, and a data acquisition device. The data acquisition device is configured to digitize the electromagnetic radiation reflected by or transmitted though the sample to yield waveform data, wherein the waveform data represents the radiation reflected by or transmitted though the sample, the waveform data having a first magnitude, a second magnitude and a third magnitude. The material property to be determined is generally the adhesive strength between the first and second layers.
Abstract:
Un sistema para compensar la dispersión en un sistema de terahercios, el sistema comprendiendo: una fibra óptica configurada para transmitir un impulso óptico; un compensador ópticamente acoplado a la fibra óptica, el compensador configurado para compensar una dispersión del impulso óptico causada cuando el impulso óptico se propaga a través de la fibra óptica; un dispositivo de terahercios ópticamente inducido provisto de una antena, el dispositivo de terahercios ópticamente inducido acoplado ópticamente al compensador, por lo que el dispositivo de terahercios está configurado para transmitir o recibir radiación de terahercios a través de la antena; en el que el dispositivo de terahercios ópticamente inducido es un receptor de terahercios, en el que la antena está ópticamente acoplada al compensador para el muestreo del campo eléctrico formado en la antena desde la radiación de terahercios recibida; en el que compensador es una fibra de cristal fotónico, la fibra de cristal fotónico siendo un compensador fijo y el compensador adicionalmente comprende un conversador ajustable conjuntamente con el compensador fijo.
Abstract:
A system for dispersion compensation in a terahertz system includes an optical fiber configured to transmit an optical pulse, a compensator optically coupled to the optical fiber, the compensator configured to compensate for a dispersion of the optical pulse caused as the optical pulse propagates through the optical fiber, and an optically induced terahertz device optically coupled to the compensator, whereby the optically induced terahertz device is configured to transmit or receive terahertz radiation.
Abstract:
A system for dispersion compensation in a terahertz system includes an optical fiber configured to transmit an optical pulse, a compensator optically coupled to the optical fiber, the compensator configured to compensate for a dispersion of the optical pulse caused as the optical pulse propagates through the optical fiber, and an optically induced terahertz device optically coupled to the compensator, whereby the optically induced terahertz device is configured to transmit or receive terahertz radiation.
Abstract:
A system for reducing effects relating to stretching of an optical fiber includes an optical control source, the optical source outputting an optical signal, a terahertz transmitter and receiver both being optically coupled to the optical source, and a means for providing the optical signal to both the terahertz transmitter and terahertz receiver such that the terahertz receiver is synchronized to the terahertz transmitter by the optical signal. The means prevents the stretching of an fiber carrying the optical signal provided to the terahertz transmitter or terahertz receiver or allows for the stretching an optical fiber such that the terahertz receiver will still be synchronized to the terahertz transmitter by the optical signal.
Abstract:
A system for dispersion compensation in a terahertz system includes an optical fiber configured to transmit an optical pulse, a compensator optically coupled to the optical fiber, the compensator configured to compensate for a dispersion of the optical pulse caused as the optical pulse propagates through the optical fiber, and an optically induced terahertz device optically coupled to the compensator, whereby the optically induced terahertz device is configured to transmit or receive terahertz radiation.
Abstract:
A system for varying a delay of an optical beam has a rotatable wheel and a set of one or more prisms mounted about a circumference of the rotatable wheel. The set of one or more prisms are positioned to retroreflect the optical beam that passes approximately tangent to the rotatable wheel to cause a delay or phase shift to the beam as the rotatable wheel rotates.
Abstract:
An optical delay line device includes a rotatable wheel and one or more prisms mounted about the circumference of the wheel. The one are more prisms are positioned to retroreflect the optical beam that passes approximately tangent to the wheel to cause a delay or phase shift to the beam as the wheel rotates.
Abstract:
A system for interpreting terahertz radiation includes a terahertz transmitter configured to output a pulse of terahertz radiation and a terahertz receiver configured to receive at least a portion of the pulse of radiation from the terahertz transmitter. The terahertz receiver is configured to output a signal based on the radiation received by the terahertz receiver.
Abstract:
A system to detect contraband article, like explosives or chemical weapons in packages, laggage or clothing includes one or more terahertz modules. Each module either generates or receives, or both generates and receives, terahertz radiation. Some of the terahertz radiation is reflected from the article and the remainder of the terahertz radiation is transmitted through the article. A processor analyzes the reflected and transmitted terahertz radiation to characterize the article.