Abstract:
A handheld pointing device includes a main body, an image sensing module, an acceleration sensing module and a processing circuit. The image sensing module is disposed in the main body and configured to capture an image comprising at least one reference light source and accordingly generate an optical sensing signal. The acceleration sensing module is disposed in the main body and configured to sense an acceleration value in each one of two dimensions; wherein the acceleration sensing module outputs an acceleration sensing signal if an absolute value of the summation of the two acceleration values in two dimensions is located within a predetermined acceleration range. The processing circuit is configured to receive the optical sensing signal and the acceleration sensing signal and accordingly generate an output signal.
Abstract:
There is provided an optical pointing system including at least one reference beacon, an image sensor, a storage unit and a processing unit. The image sensor is configured to capture an image frame containing a beacon image associated with the at least one reference beacon. The storage unit is configured to save image data of at least one object image in the image frame. The processing unit is configured to sequentially process every pixel of the image frame for identifying the object image and real-timely remove or merge the image data, saved in the storage unit, associated with two object images within a pixel range of the image frame thereby reducing the used memory space.
Abstract:
There is provided an optical pointing system including at least one reference beacon, an image sensor, a storage unit and a processing unit. The image sensor is configured to capture an image frame containing a beacon image associated with the at least one reference beacon. The storage unit is configured to save image data of at least one object image in the image frame. The processing unit is configured to sequentially process every pixel of the image frame for identifying the object image and real-timely remove or merge the image data, saved in the storage unit, associated with two object images within a pixel range of the image frame thereby reducing the used memory space.
Abstract:
A handheld pointing device includes a body, an image sensing module and a processing circuit. The image sensing module is disposed in the body and configured to sense a reference light source and thereby capturing an image including of the reference light source. The processing circuit, disposed in the body and electrically connected to the image sensing module, is configured to obtain the image including of the reference light source, calculate a coordinate of the image of the reference light source relative to the image captured by the image sensing module, and correct the coordinate according to a distance or a distance change between the body and the reference light source. An operation method of a handheld pointing device is also provided.
Abstract:
There is provided an optical pointing system including at least one reference beacon, an image sensor, a storage unit and a processing unit. The image sensor is configured to capture an image frame containing a beacon image associated with the at least one reference beacon. The storage unit is configured to save image data of at least one object image in the image frame. The processing unit is configured to sequentially process every pixel of the image frame for identifying the object image and real-timely remove or merge the image data, saved in the storage unit, associated with two object images within a pixel range of the image frame thereby reducing the used memory space.
Abstract:
There is provided an optical pointing system including at least one reference beacon, an image sensor, a storage unit and a processing unit. The image sensor is configured to capture an image frame containing a beacon image associated with the at least one reference beacon. The storage unit is configured to save image data of at least one object image in the image frame. The processing unit is configured to sequentially process every pixel of the image frame for identifying the object image and real-timely remove or merge the image data, saved in the storage unit, associated with two object images within a pixel range of the image frame thereby reducing the used memory space.
Abstract:
An interactive system includes a display, a processor and a remote controller. The display includes at least one reference beacon for providing light with a predetermined feature. The remote controller includes an image sensor configured to capture an image containing the reference beacon and calculates an aiming coordinate according to an imaging position of the reference beacon in the captured image. The processor calculates a scale ratio of a pixel size of the display with respect to that of the image captured by the image sensor and moves a cursor position according to the scale ratio and the aiming coordinate.
Abstract:
An optical object recognition system includes at least two beacons, an image sensor and a processing unit. The beacons operate in an emission pattern and the emission pattern of the beacons has a phase shift from each other. The image sensor captures image frames with a sampling period. The processing unit is configured to recognize different beacons according to the phase shift of the emission pattern in the image frames.
Abstract:
A remote device includes an image sensor, a readout circuit and a processing unit. The image sensor successively captures a first image and a second image containing at least one reference beacon image. The readout circuit is configured to read first image data of the first image and second image data of the second image from the image sensor. The processing unit is configured to calculate an image feature of the at least one reference beacon image according to the first image data and control the readout circuit to only read the second image data of a range of interest in the second image according to the image feature. There is further provided a power saving method of an interactive system.
Abstract:
An interactive imaging system includes an image system and a remote controller. The image system includes at least one reference beacon, a receiving unit and a host. The at least one reference beacon emits light in an emission pattern. The receiving unit is configured to receive a packet data. The host controls an enable time of the at least one reference beacon according to the packet data. The remote controller includes an image sensor and a transmission unit. The image sensor captures the light emitted from the at least one reference beacon at a sampling period. The transmission unit sends the packet data corresponding to the sampling period of the image sensor.