Abstract:
Optical imaging is used for touch input to implement device and method for gesture detection for better durableness, high resolution, simplifier structure, higher reliability, less power consumption, and faster response. A touch surface is provided for gesture operation thereon, and under light projecting to the touch surface, images are captured by receiving light from the touch surface. The varying images are monitored to detect if any gesture operates on the touch surface, and if a predefined gesture is detected, a gesture signal is generated.
Abstract:
There is provided an optical raindrop detector including a light source, a light guide, an image sensor and a processing unit. The light source alternatively emits light with different brightness values. The light guide has an incident surface, a detection surface and an ejection surface, wherein the light source emits incident light into the light guide via the incident surface, and a plurality of microstructures are formed on the ejection surface to reflect the incident light to become scattered light toward the detection surface. The image sensor receives reflected light formed by raindrops in front of the detection surface reflecting the scattered light to penetrate the light guide and eject from the ejection surface, and generates image frames corresponding to the different brightness values of the light source. The processing unit calculates differential images of the image frames to accordingly identify rain intensity.
Abstract:
An optical touch device includes a touch surface having a position mapping relationship with entire or a part of a picture displayed on a monitor, detects the object contacting or suspending over the touch surface and the movement of the optical touch device, and generates an absolute position signal according to the position of the detected object to point to the mapped position of the picture, a relative movement signal according to the detected movement of the optical touch device, and a control signal corresponding to the mapped position according to the absolute position signal and the relative movement signal.