Abstract:
The present disclosure relates a flash generator 10 capable of identifying which type of flash head 20 and flash head extension cables 30 that is connected to the flash generator 20. Further the disclosure relates to a flash head 20 and flash head extension cable 30 that can be identified by the flash generator 20. This object is obtained by a flash generator 10 of providing a power supply to a flash head 20. Further the flash generator 10 comprises a first current generator 13 for charging the capacitor 12. The flash generator 10 further comprises a second current generator or a voltage generator 14 connected to an output 11, 15 of the flash generator 10 and arranged to provide a current or a voltage to create a voltage U|D over a component 22, 32 in a flash head 20 or a flash head extension cable 30 connected to the flash generator 10. Processing means 16 are arranged to identify the flash head 20 or the flash head extension cable 30 by the measured voltage U ID .
Abstract:
The present invention relates to a generator for a flash device. The generator comprises at least a first capacitor bank comprising at least one capacitor of a first type. The first capacitor bank being connectable to a charger via a first switch. The first capacitor bank being further connected to an output via a first component which only allows current flow from the first capacitor bank to the output. The generator further comprises at least a second capacitor bank comprising at least one capacitor of a second type connectable to the charger via a second switch. The second capacitor bank being further connected to the output via a second component which only allows current flow from the second capacitor bank to the output. The generator is configured to individually control the first switch and the second switch so that the first capacitor bank and the second capacitor bank can be individually charged to the same or different voltages. The generator further comprises a flash trigger switch connected to a trigger output for providing a trigger voltage to a flash device connectable to the generator.
Abstract:
The present invention relates to the field of flash tubes for photographic use, in particular to a flash tube adapted to provide a light output adapted to FP-sync, Flat Peak. The flash tube comprises a length of glass tubing 42 enclosing a gas 43 for use in the flash tube 41, a cathode 44 inside a first end part 46 of glass tubing 42 and an anode 44 inside a second end part 47 of glass tubing 42. The cathode 44 comprises an element 50 that helps to ionize the gas 43 that is wound around the cathode 44, such that a spark stream starts from the upper part 48 of the cathode 44 and is prevented from spreading down wards on the cathode 44 and changing the arc length during the light output adapted to FP-sync.
Abstract:
A flash apparatus comprising at least two flash tubes and at least two energy storage units is presented, wherein each of said at least two energy storage units is being arranged to be configured to strictly correspond to one of the at least two flash tubes for a flash. The flash apparatus is configured to control the amount of energy provided by the at least two energy storage unit(s) to their corresponding flash tube and control the flash duration of the corresponding flash tube dependent of each other, respectively for each flash tube, so as to obtain substantially the same colour temperature from each flash tube for a flash. A method and a computer program product for use in the flash apparatus are also presented.
Abstract:
The present invention relates to the field of flash tubes for photographic use, in particular to a flash tube comprising a trigger element for triggering a flash in the flash tube. Accordingly, a flash tube is provided. The flash tube comprises a glass envelope enclosing a gas for use in a flash tube; a first electrode inside the glass envelope; a second electrode inside the glass envelope; and an electrically conductive trigger element being configured to receive a high voltage pulse for at least partly ionizing the gas inside the glass envelope in order to trigg a flash in said flash tube, wherein said electrically conductive trigger element extends along the glass envelope from a first point on the glass envelope adjacent to the first electrode to a second point on the glass envelope adjacent to the second electrode such that a single unified spark stream which bridges the first and second electrodes inside the glass envelope is formed in the at least partly ionized gas adjacent to said electrically conductive trigger element when said electrically conductive trigger element receives the high voltage pulse.
Abstract:
Flash tubes for photographic use, in particular a flash tube is adapted to provide a light output adapted to FP-sync, Flat Peak. The flash tube includes a length of glass tubing enclosing a gas for use in the flash tube, a cathode inside a first end part of glass tubing and an anode inside a second end part of glass tubing. The cathode includes an element that helps to ionize the gas that is wound around the cathode, such that a spark stream starts from the upper part of the cathode and is prevented from spreading down wards on the cathode and changing the arc length during the light output adapted to FP-sync.
Abstract:
A generator for a flash device includes at least a first capacitor bank, which includes at least one capacitor of a first type and at least a second capacitor bank, which includes at least one capacitor of a second type. The first capacitor bank is connectable to a charger via a first switch and the second capacitor bank is connectable to a charger via a second switch. The generator is configured to individually control the first switch and the second switch so that the first capacitor bank and the second capacitor bank can be individually charged to the same or different voltages. Since the first capacitor bank and the second capacitor bank can be simultaneously discharged, it is possible to achieve a desired energy level and color temperature from a flash device connected to the generator.
Abstract:
A generator for a flash device includes at least a first capacitor bank, which includes at least one capacitor of a first type and at least a second capacitor bank, which includes at least one capacitor of a second type. The first capacitor bank is connectable to a charger via a first switch and the second capacitor bank is connectable to a charger via a second switch. The generator is configured to individually control the first switch and the second switch so that the first capacitor bank and the second capacitor bank can be individually charged to the same or different voltages. Since the first capacitor bank and the second capacitor bank can be simultaneously discharged, it is possible to achieve a desired energy level and color temperature from a flash device connected to the generator.
Abstract:
A flash generator is capable of identifying which type of flash head and flash head extension cables that is connected to the flash generator. A flash head and flash head extension cable can be identified by the flash generator. The flash generator provides a power supply to a flash head. Further the flash generator includes a first current generator for charging the capacitor. The flash generator further includes a second current generator or a voltage generator connected to an output of the flash generator and arranged to provide a current or a voltage to create a voltage UID over a component in a flash head or a flash head extension cable connected to the flash generator. Processing means are arranged to identify the flash head or the flash head extension cable by the measured voltage UID.
Abstract:
The present invention relates to the field of flash tubes for photographic use, in particular to a flash tube comprising a trigger element for triggering a flash in the flash tube. Accordingly, a flash tube is provided. The flash tube comprises a glass envelope enclosing a gas for use in a flash tube; a first electrode inside the glass envelope; a second electrode inside the glass envelope; and an electrically conductive trigger element being configured to receive a high voltage pulse for at least partly ionizing the gas inside the glass envelope in order to trigg a flash in said flash tube, wherein said electrically conductive trigger element extends along the glass envelope from a first point on the glass envelope adjacent to the first electrode to a second point on the glass envelope adjacent to the second electrode such that a single unified spark stream which bridges the first and second electrodes inside the glass envelope is formed in the at least partly ionized gas adjacent to said electrically conductive trigger element when said electrically conductive trigger element receives the high voltage pulse.