Abstract:
The present invention discloses a rotor control system where rapid changes in rotor torque are transferred into moment forces acting about the blade pitch axis of a rotor blade in a thrust-generating rotor, to ultimately control the movements of a rotary wing aircraft. The moment forces acting on the rotor blade are transferred through a carefully adjusted damping member in order to allow rapid changes in rotor torque to create cyclic changes in blade pitch angle, while slow or permanent changes are cancelled out and affects the rotational speed and the thrust generated by the rotor, without permanently affecting the blade pitch angle of individual rotor blades.
Abstract:
A torque dependent rotor assembly (1) with a spring system (100), the torque dependent rotor assembly (1) being designed to operate in resonance, where changes in applied torque on the rotor controls the blade pitch angle and ultimately the movements of a rotary wing aircraft. The stiffness of an associated spring member (14) is allowed to vary in response to the torque applied from a motor (31) to the rotor assembly (1).
Abstract:
A torque dependent and resonant operating thrust-generating rotor assembly (10, 11), comprising a cyclic pitch control system for controlling tilting moments about a longitudinal rotor blade axis (15) of one or more rotor blades (12a, 12b) in order to control the pitch angle of these rotor blades (12a, 12b) and thereby also the horizontal movements of a helicopter vehicle or a rotary wing aircraft. A rotor torque assembly (10) of the rotor assembly (10, 11) is further adjusted to operate in resonance, thereby providing a resonant gain effecting a rotational offset in relation to changes in torque generated by a motor.
Abstract:
Local wind fields can be predicted if both the airspeed and the ground speed of the helicopter are known. An aircraft that uses an inertial navigation unit, autopilot and estimator allows a measure of ground speed to be known with good certainty. The embodiments herein extends this system to allow an estimate of the local wind field to be found without actively using an airspeed sensor, but instead combining the measurements of an accelerometer and a drag force model and a model of controlled aerodynamics of the aircraft to estimate the airspeed, which again can be used to estimate the local wind speed.
Abstract:
The invention describes a method and device for precise control of and controller design for aircrafts consisting of at least one spinning part and at least one non spinning part. Typically, but without loss of generality, the spinning part is a rotor, whereas the non-spinning part is a fuselage. The principle described can be extended to any number of spinning and non-spinning parts, making the invention applicable to traditional single rotor helicopter design as well as multi rotor designs. The method and device is particularly suitable for UAVs, where the operator does not see the aircraft during all flight, and thus is unable to correct the attitude. However, the method is applicable also for model aircrafts and full size aircrafts. The inventions principle is to continuously and individually calculate the required torques for control of the spinning parts and for the non-spinning parts, and combine all torques to get the correct torque for the complete aircraft. Doing this, it's possible to continuously apply the correct torque, both correctly distributed among the roll and pitch axes (correct angle), and correct magnitude. The result is a decoupling of the roll and pitch axes, simplifying controller design to a design of two single input single output controllers, one for each axe.
Abstract:
A method and device for precise control of and controller design for aircrafts consisting of at least one spinning part and at least one non-spinning part is provided. The required torques for control of the spinning parts and for the non-spinning parts are continuously and individually calculated. All torques are combined to get the correct torque for the complete aircraft. Doing this, it's possible to continuously apply the correct torque, both correctly distributed among the roll and pitch axes (correct angle), and correct magnitude. The result is a decoupling of the roll and pitch axes, simplifying controller design to a design of two single input single output controllers, one for each axe.