Abstract:
A process and an apparatus are disclosed for improved recovery of metal from hot and cold dross, wherein a dross-treating furnace is provided with a filling material with good capacity to store heat. This filling material is preheated to a desired temperature by injection of an oxidizing gas to bum non- recoverable metal remaining in the filling material after tapping of the recoverable metal contained in the dross and discharging of the treatment residue, When dross is treated in such furnace, the heat emanating by conduction from the filling material is sufficient to melt and separate the recoverable metal contained in the dross, without addition of an external heat source, such as fuel or gas burners, plasma torches or electric arcs and without use of any salt fluxes. Furthermore, the recovered metal being in the molten state can be fed to the molten metal holding furnace without cooling the melt; in addition, the non-use of fluxing salt for the treatment means that the non- contaminated residue can be used as a cover for the electrolytic cells in the case of aluminum. In the case of zinc dross, the residue is a valuable zinc oxide by-product very low in contaminants.
Abstract:
Abstract The present application relates to a plasma atomization process and apparatus for producing metallic powders from at least one wire feedstock. In the process, an electric arc is applied to the at least one wire feedstock to melt the same. A plasma torch is employed to generate a supersonic plasma stream at an apex at which the electric arc is transferred to the at least one wire feedstock to atomize the molten wire feedstock into particles. A downstream cooling chamber solidifies the particles into the metallic powders. An anti-satellite diffuser is employed to prevent recirculation of the powders in order to avoid satellite formation. In an apparatus where two wires are fed, one wire serves as an anode, and the other as a cathode.
Abstract:
Aparato para convertir Recubrimiento de Marmita Gastada (SPL) en gas inerte, fluoruro de aluminio y energía, que incluye un horno de arco de plasma de modo que la destrucción de SPL ocurre allí. El horno genera un arco eléctrico dentro del residuo, dicho arco viaja desde un ánodo hasta un cátodo y destruye el residuo debido a la temperatura extrema del arco, convirtiendo de esta forma una fracción mineral de SPL en escoria inerte vitrificada dentro de un crisol del horno. El horno gasifica el contenido de carbono del SPL y produce un gas de síntesis bien balanceado. La gasificación se lleva a cabo debido al ingreso controlado de aire y vapor dentro del horno. La reacción de gasificación libera una cantidad significativa de energía. El vapor captura este exceso de energía, para suministrar parte del requerimiento de oxígeno para gasificación y para contribuir a elevar el contenido de gas de síntesis H2. El vapor también contribuye a convertir algunos fluoruros de SPL (NaF y Al2F3) en fluoruro de hidrógeno. El sistema de procesamiento de SPL de plasma es compacto (ocupa menos área que los métodos competitivos de tratamiento de SPL), puede ser instalado en cercanía a la planta de aluminio (minimizando el transporte de SPL y AlF3), y requiere únicamente electricidad como su fuente de energía y, por lo tanto, sin combustibles fósiles.
Abstract:
El aparato para convertir revestimiento de celda agotado (SPL) en escoria inerte, fluoruro de aluminio y energía incluye un horno de arco de plasma, de manera de producir allí la destrucción del SPL. El horno genera un arco eléctrico dentro de los desechos, que se desplaza desde un ánodo hasta un cátodo y destruye los desechos debido a la temperatura extrema del arco, de modo de convertir así una fracción mineral de SPL en escoria inerte vitrificada que se encuentra dentro de un crisol del horno. El horno gasifica el contenido de carbono del SPL y produce un gas de síntesis bien equilibrado. La gasificación tiene lugar debido a la entrada controlada de aire y vapor en el horno. La reacción de gasificación libera una cantidad significativa de energía. El vapor captura este exceso de energía, para proporcionar parte del requerimiento de oxígeno para la gasificación y contribuir a elevar el contenido de H2 del gas de síntesis. El vapor también contribuye a convertir algunos fluoruros de SPL (NaF y Al₂F₃) en fluoruro de hidrógeno. El sistema de procesamiento de SPL de plasma es compacto (ocupa menos área que algunos métodos competitivos de tratamiento de SPL), se puede instalar en estrecha proximidad a la planta de aluminio (de modo de minimizar el transporte de SPL y AlF₃), y solo requiere electricidad como fuente de energía y, por lo tanto, no requiere combustibles fósiles
Abstract:
aparelho de plasma para a produção de pós esféricos de alta qualidade em alta capacidade. um aparelho e um processo para a produção em alta capacidade de pós de alta pureza de um fio ou haste de grande diâmetro utilizando uma combinação de maçaricos de plasma e aquecimento por indução são apresentados. o processo proporciona uma produtividade superior, por incorporar um sistema de pré-aquecimento indutivo mais eficaz. um mecanismo também é incluído no aparelho, que permite ajustar a posição dos maçaricos de plasma e seu ângulo de ataque com relação ao fio, que tem um efeito direto sobre a transferência mecânica e térmica de energia da pluma de plasma para o fio, permitindo um controle fino sobre a distribuição de tamanho de partícula bem como a capacidade de produção. além disso, variar a frequência de indução permite a otimização do perfil de temperatura dentro do fio, que pode ser diretamente correlacionada com o tamanho médio de partícula resultante.
Abstract:
The present application relates to a plasma atomization process and apparatus for producing metallic powders from at least one wire/rod feedstock. In the process, an electrical arc is applied between the at least one wire/rod feedstock, and a plasma torch is employed to generate a supersonic plasma stream at an apex at which the electric arc is transferred to the at least one wire/rod to melt and atomize the at least one wire/rod feedstock to produce the metallic powders. An anti-satellite diffuser is employed to prevent recirculation of the powders in order to avoid satellite formation.
Abstract:
A process wherein CO2, methane, and steam react at high temperatures, for instance approximately 1600 °C, to form a synthetic gas or syngas. This syngas can then be used in a methanol production plant. The carbon dioxide used to produce the syngas may also comprise recovered emissions from the production of methanol or urea, such that CO2 is recycled. The rich syngas is produced by the bi-reforming of methane, featuring a combination of dry reforming of methane and steam reforming of methane, via the reaction CO2+3CH4+2H2O?4CO+8H2, such that the H2:CO ratio is 2. A plasma reactor may be provided for the reaction. Excess heat from the syngas may be used for heating the water that is used as steam for the reaction.
Abstract:
A high power DC steam plasma torch system (S) includes a steam plasma torch assembly (1) wherein superheated steam (46) is used as the main plasma forming gas, thereby resulting in a very reactive steam plasma plume. The superheated steam (46) is injected internally directly into the plasma plume via a ceramic lined steam feed tube (25) for reducing condensation of steam before reaching the plasma plume. The superheated steam (46) flows through a gas vortex (16) which has tangentially drilled holes thereby resulting in a high speed gas swirl that minimizes electrode erosion. In the present steam plasma torch system (S), the plasma torch assembly (1) is ignited using an ignition contactor which is housed external to the plasma torch assembly (1). The superheated steam (46) is injected into the plasma plume using a water cooled steam vortex generator assembly (15).
Abstract:
An apparatus is disclosed wherein an electric arc is employed to heat an injected gas to a very high temperature. The apparatus comprises four internal components: a button cathode and three cylindrical co-axial components, a first short pilot insert, a second long insert and an anode. Vortex generators are located between these components for generating a vortex flow in the gas injected in the apparatus and which is to be heated at very high temperature by the electric arc struck between the anode and cathode. Cooling is provided to prevent melting of three of the internal components, i.e. the cathode, the anode and the pilot insert. However, to limit the heat loss to the cooling fluid, the long insert is made of an insulating material. In this way, more electrical energy is transferred to the gas.