Abstract:
A communication connector has an outer housing with an opening, a shielding wrap at least partially enclosing the outer housing, and a contact carrier assembly configured to be interested into the opening of the outer housing. The contact carrier assembly at least partially encloses at least two contacts each with an insulation displacement contact (IDC). The contact carrier assembly also has an integrated wire cap that utilizes a hinge feature to press cable conductors of a cable into their respective IDCs.
Abstract:
A modular communications plug is disclosed having a simplified design that allows for more efficient termination of a cable into the plug. The plug includes modular components that are applicable to different applications.
Abstract:
A Rj45 plug (34) comprising: a housing (42,50) with an opening; a sled assembly (60,100,152,180) contained within the housing wherein the sled assembly (10,100,152,180) has a plurality of contacts (68,158,184) accessible via the opening; and a plug interface contact (PIC) cover (62,112,158,182) at least partially surrounding a first contact of the plurality of contacts wherein the PIC cover (62,112,158,182) is electrically insulated from the first plug interface contact of the plurality of contacts and electrically connected to a second plug interface contact of the plurality of contacts.
Abstract:
An electrical coupler has first and second housing halves and first and second contacts retained within the first and second housing halves. Wherein the first housing half is identical to the second housing half and the first contact is identical to the second contact.
Abstract:
A communications connector has a main plug assembly and a wire cap that is configured to terminate a pair of conductors to the pair of contacts by being secured to a side of the main plug assembly in a direction perpendicular to a plane defined by a deflection direction of a latch of the connector. In another embodiment, a communications connector has a main plug assembly and two electrical contacts within the main plug assembly wherein each electrical contact has a first end having a forked receptacle and a second end having an IDC that is configured to have a conductor terminated in a direction perpendicular to a direction of mating insertion and parallel to a plane defined by the contact.
Abstract:
A communication connector has a housing for receiving a communication plug, a printed circuit within the housing, a switch which actuates the printed circuit board, and a translating crossbar which engages the switch. The printed circuit board is moved dependent upon a type of plug inserted. The movement of the circuit board can help to selectively engage one of two sets of circuit traces and groupings of contacts.
Abstract:
Embodiments of the present invention relate to designs for network jacks which can be used for cable connectivity. In an embodiment, the present invention is an RJ45 jack that utilizes a thin dielectric film between two layers of PICs that provide crosstalk compensation by way of their geometry. Compensation is achieved by way of capacitor plates which sandwich a thin dielectric film. This allows for the layers of PICs to be in close proximity and achieve higher coupling where desired, allowing a greater amount of compensation to occur close to the plug/jack contact point. This can have the effect of moving compensation closer to the plug/jack contact point, which in turn may reduce the amount of compensation needed further along the data path.
Abstract:
A patch cord for an intelligent patching system is provided. The patch cord is a ten-wire patch cord having a patch panel plug (12) and a switch plug (14). The patch panel plug contains ninth and tenth wire contacts (20, 22) that interface with ninth and tenth wire contacts (24, 26) of an intelligent patch panel port (28). The switch plug is provided with a plunger-style switch that enables the intelligent patch panel to determine when the switch plug is plugged into a switch port. The switch plug is also provided with LED's (44, 46) and circuitry that controls the LED's.
Abstract:
A wire containment cap for reducing horizontal strain on a cable terminated at a communication jack. The wire containment cap is part of the communication jack and includes a strain relief clip that may be actuated to apply pressure to the cable. The applied pressure holds the cable in place and helps prevent wire pairs of the cable from pulling out of terminals in the communication jack.
Abstract:
A communications connector has a main housing with a front opening and first, second, and third rear openings. The connector also has first, second, and third contacts, the first contact extends from the first rear opening of the main housing to the front opening of the main housing. The second contact extends from the second rear opening of the main housing to the front opening of the main housing. The third contact extends from the third rear opening of the main housing to a shield surrounding a front portion of the main housing.