Abstract:
A superheat sensor includes a housing, a pressure sensor mounted within the housing, a temperature sensor that is integrated to the pressure sensor, and/or is external to the pressure sensor, a fluid passageway connecting the pressure sensor to a source of superheat fluid, and a processor.
Abstract:
A superheat sensor includes a housing, a pressure sensor mounted within the housing, a temperature sensor that is integrated to the pressure sensor, and/or is external to the pressure sensor, a fluid passageway connecting the pressure sensor to a source of superheat fluid, and a processor.
Abstract:
A method to prevent movable structures within a MEMS device, and more specifically, in recesses having one or more dimension in the micrometer range or smaller (i.e., smaller than about 10 microns) from being inadvertently bonded to non-moving structures during a bonding process. The method includes surface preparation of silicon both structurally and chemically to aid in preventing moving structures from bonding to adjacent surfaces during bonding, including during high force, high temperature fusion bonding.
Abstract:
A non-abrading method to facilitate bonding of semiconductor components, such as silicon wafers, that have micro structural defects in a bonding interface surface. In a preferred method, micro structural defects are removed by forming an oxide layer on the bonding interface surface to a depth below the level of the defect, and then removing the oxide layer to expose a satisfactory surface for bonding, thereby increasing line yield and reducing scrap triggers in fabrication facilities.
Abstract:
A non-abrading method to facilitate bonding of semiconductor components, such as silicon wafers, that have micro structural defects in a bonding interface surface. In a preferred method, micro structural defects are removed by forming an oxide layer on the bonding interface surface to a depth below the level of the defect, and then removing the oxide layer to expose a satisfactory surface for bonding, thereby increasing line yield and reducing scrap triggers in fabrication facilities.
Abstract:
A method to prevent movable structures within a MEMS device, and more specifically, in recesses having one or more dimension in the micrometer range or smaller (i.e., smaller than about 10 microns) from being inadvertently bonded to non-moving structures during a bonding process. The method includes surface preparation of silicon both structurally and chemically to aid in preventing moving structures from bonding to adjacent surfaces during bonding, including during high force, high temperature fusion bonding.