Abstract:
There is provided a physiological detection device including a white light source, a molding and a pixel array. The white light source is configured to emit white light having a color temperature between 2800K and 3200K. The molding is formed upon the white light source and configured to constrain an emission angle of the white light between 60 and 80 degrees. The pixel array is covered by a filter layer having a passband between 570 nm and 620 nm configured to filter the white light.
Abstract:
There is provided an optical touch system including a touch surface, a plurality of image sensors and a plurality or compensation light sources, wherein each of the image sensors is adjacent to one of the compensation light sources. When one of the image sensors is capturing an image frame, the compensation light source not adjacent to and within a field of view of the image sensor which is capturing the image frame irradiates so as to compensate a brightness distribution of the image frame.
Abstract:
An operation method of an optical touch system is provided. The optical touch system includes a touch surface, a light sensing unit, a switch unit and an analog-to-digital conversion unit. The light sensing unit includes a plurality of light sensing elements. The operation method includes: turning on one specific light sensing element group and thereby configuring the light sensing elements thereof to sense the light on the touch surface; and controlling the switch unit to electrically connect the light sensing elements of the turned-on light sensing element group to the input terminals of the analog-to-digital conversion unit, respectively, so as to transmit the sensing signals outputted from the turned-on light sensing element group to the input terminals, and thereby configuring the analog-to-digital conversion unit to generate at least one digital output signal according to the sensing signals supplied to the input terminals thereof. An optical touch system is also provided.
Abstract:
There is provided an optical touch system including at least one lighting unit, at least one image sensing module and a processing unit. The image sensing module is configured to capture light of a pointer and the lighting unit to generate a two-dimensional image and to convert entire of the two-dimensional image to a one-dimensional feature. The processing unit positions the pointer according to the one-dimensional feature.
Abstract:
There is provided a heart rate detection device including a sensing unit for sensing emergent light from subcutaneous tissues illuminated by a single light source of multiple light colors to output multiple light detection signals associated with multiple wavelengths. The heart rate detection device further includes a processor uses the multiple light detection signals associated with the multiple wavelengths to cancel motion artifact to obtain a clean heart rate signal.
Abstract:
A heart rate detection module including a PPG measuring device, a motion sensor and a processing unit is provided. The PPG measuring device is configured to detect a skin surface in a detection period to output a PPG signal. The motion sensor is configured to output an acceleration signal corresponding to the detection period. The processing unit is configured to respectively convert the PPG signal and the acceleration signal to first frequency domain information and second frequency domain information, determine a denoising parameter according to a maximum spectrum peak value of the second frequency domain information to denoise the first frequency domain information, and calculate a heart rate according to a maximum spectrum peak value of the denoised first frequency domain information.
Abstract:
There is provided a system architecture including a PPG hardware module and a MEMS hardware module. The PPG hardware module processes PPG raw data, which is generally composed of analog signals or digital signals. The PPG hardware module filters the raw data for later digital calculation to, for example, find out frequency signals with higher peak values. The PPG hardware module then outputs the selected frequency signals to an MCU for heart rate calculation. The MEMS hardware module receives MEMS raw data from a motion detector made of MEMS elements. The MEMS raw data represents motion status of a user that could possibly affect the heart rate determination result. The MEMS hardware module filters the raw data for later digital calculation to find out frequency signals with higher peak values caused by motion.
Abstract:
An optical touch control method includes steps of: providing a bright background from at least one edge of a touch surface in a first period; providing illumination light to the touch surface in a second period; capturing a first image of an indicator object blocking a portion of the bright background in the first period; and capturing a second image of the indicator object reflecting the illumination light in the second period. An optical touch system is also provided.
Abstract:
A wearable device including a skin sensor and a processor is provided. The processor is configured to receive an authentication data for authenticating a user when a wearing state of the wearable device is adjacent to a skin surface of the user, execute a predetermined function in response to a request when the authentication data matches a pre-stored data and the skin sensor determines that the wearable device does not leave the skin surface after the authentication data is received, and reject or ignore the request when the skin sensor determines that the wearable device leaves the skin surface before the predetermined function is executed.
Abstract:
The present invention provides an optical touch system configured to determine an object region according to a brightness information acquired by a brightness sensing unit and to identify a block information of objects within the object region according to an image information acquired by an image sensing unit. The present invention further provides an objection detection method for an optical touch system.