Abstract:
A structurally colored pigment is described that contains a plurality of photonic crystal particles dispersed in a medium, where each photonic crystal particles contains a plurality of spectrally selective absorbing components dispersed within the photonic crystal particle. In certain embodiments, each photonic crystal particle has a predetermined minimum number of repeat units of the photonic crystal structure. The structurally colored material provides improved reflectance, long-term stability, and control of the desired optical effects. The fabrication techniques described herein also provide high throughput and high yield allowing use in wide ranging applications from cosmetics, paints, signs, sensors, to packaging material.
Abstract:
A method of making a multi-layered film includes depositing thin film layers onto a first side of a double-sided transparent substrate. The thin film layers are transparent, and two adjacent layers of said plurality of thin film layers have different refractive indices. One or more absorbers are deposited at an interface formed between two of the thin film layers that are adjacent to one another, or formed by the first side of the substrate and one of the thin film layers. The absorbers absorb selected wavelengths of incident light and reflect part of the incident light after inducing a phase shift. The location of the interface is selected to provide desired wavelengths of absorbed and reflected light. The multi-layered film has a first appearance when viewed from the first side of the substrate and a second appearance when viewed from the second side of the substrate.
Abstract:
A three-dimensional porous photonic structure, whose internal pore surfaces can be provided with desired surface properties in a spatially selective manner with arbitrary patterns, and methods for making the same are described. When exposed to a fluid (e.g., via immersion or wicking), the fluid can selectively penetrate the regions of the structure with compatible surface properties. Broad applications, for example in security, encryption and document authentication, as well as in areas such as simple microfluidics and diagnostics, are anticipated.
Abstract:
A pigment comprising a plurality of photonic crystal particles dispersed in a medium, each photonic crystal particles containing a plurality of spectrally selective absorbing components dispersed within each photonic crystal particle that selectively absorb electromagnetic radiation without substantially absorbing electromagnetic radiation near a resonant wavelength of each photonic crystal particle, wherein each photonic crystal particle has a predetermined minimum number of repeat units of a photonic crystal structure, wherein the predetermined minimum number of repeat units is related to the resonant wavelength, the full-width at half maximum of the resonant wavelength, and the refractive index contrast in the photonic crystal.
Abstract:
A tamper-indicating device comprising is described, including a gas-permeable casing; and a first gas-sensitive compound encapsulated within the gas-permeable casing, wherein the first gas-sensitive compound is selected to provide a visual response upon exposure to gas.
Abstract:
A system and method to measure properties of a liquid, comprising: a colorimetric sensor comprising a photonic structure that displays a first signature upon exposure to a sample liquid that wets at least some of the interior surfaces of the porous photonic structure and displays a signature different from the first signature as the sample liquid evaporates. The system further includes a device to capture changes in the color of the colorimetric sensor; a memory to store data generated by the device; and a processing unit to analyze the data captured by the device. The processing unit compares the data captured by the device with a reference data, wherein the reference data comprises information regarding a time-dependent response of the colorimetric sensor upon exposure to and removal of a first set of predetermined liquids and to output information regarding the sample liquid.