Abstract:
Mechanism to mitigate signal interference in ultra wide band (UWB) networks based on spatial reuse of the signal spectrum. Efficient media access control (MAC) in wireless networks is challenging because wireless devices may be affected by signal interference during spatial multiplexing. Wireless ad-hop (multi-hop) networks exploit the limited system bandwidth available via spatial reuse to enhance aggregate throughput. Spatial reuse allows concurrent data exchanges, resulting in higher throughputs.
Abstract:
Aspects describe service discovery of wireless MDDI client-capable devices though interaction with an underlying bearer protocol. Service discovery can be performed when the underlying layer supports multicasting, when the underlying layer is wiMedia UWB MAC and/or UDP/IP. Service discovery can be initiated by a w-MDDI sender and/or a w-MDDI receiver. An optional mutual security association procedure can be conducted if both devices support security and security is necessary.
Abstract:
Aspects describe service discovery of wireless MDDI client-capable devices though interaction with an underlying bearer protocol. Service discovery can be performed when the underlying layer supports multicasting, when the underlying layer is wiMedia UWB MAC and/or UDP/IP. Service discovery can be initiated by a w-MDDI sender and/or a w-MDDI receiver. An optional mutual security association procedure can be conducted if both devices support security and security is necessary.
Abstract:
Aspects describe service discovery of wireless MDDI client-capable devices though interaction with an underlying bearer protocol. Service discovery can be performed when the underlying layer supports multicasting, when the underlying layer is wiMedia UWB MAC and/or UDP/IP. Service discovery can be initiated by a w-MDDI sender and/or a w-MDDI receiver. An optional mutual security association procedure can be conducted if both devices support security and security is necessary.
Abstract:
Embodiments are described in connection with transferring data traditionally communicated through a wired link over a high-speed wireless link. The disclosed embodiments provide the wired and/or wireless data communication with minimal changes on the existing wired architecture. According to an embodiment is an apparatus for communicating wirelessly over a traditional wired link. The apparatus includes a transmitter comprising a host and a first portion of a client connected by a wired link and a receiver comprising a second portion of the client. According to some embodiments, the apparatus can include a query module that determines an operation rate based in part on a rate supported by a medium access control and a retransmission statistic and an assigner module that assigns a communication to a wired protocol or a wireless protocol.
Abstract:
Aspects describe service discovery of wireless MDDI client-capable devices though interaction with an underlying bearer protocol. Service discovery can be performed when the underlying layer supports multicasting, when the underlying layer is wiMedia UWB MAC and/or UDP/IP. Service discovery can be initiated by a w-MDDI sender and/or a w-MDDI receiver. An optional mutual security association procedure can be conducted if both devices support security and security is necessary.
Abstract:
Embodiments are described in connection with transferring data traditionally communicated through a wired link over a high-speed wireless link. The disclosed embodiments provide the wired and/or wireless data communication with minimal changes on the existing wired architecture. According to an embodiment is an apparatus for communicating wirelessly over a traditional wired link. The apparatus includes a transmitter comprising a host and a first portion of a client connected by a wired link and a receiver comprising a second portion of the client. According to some embodiments, the apparatus can include a query module that determines an operation rate based in part on a rate supported by a medium access control and a retransmission statistic and an assigner module that assigns a communication to a wired protocol or a wireless protocol.
Abstract:
Resource management in ad-hoc wireless communications system for increased spatial reuse of signal spectrum. The method according to the invention comprises : receiving a request to reserve message from a first wireless communication device (WCD); detemining a signal quality value based on the received request to reserve message; providing, as a response, a transmission reservation confirm message which includes an assigned data rate; determining a threshold margin of the signal quality value at the data rate; and transmitting a reduction in power value for adjusting the power of the first WCD based on a received power in accordance with the signal quality value and the threshold margin.
Abstract:
The invention is defined by a method for establishing quality of service (QoS) communications in an ad hoc network, comprising: ascertaining a path to a destination device; sending a Request- to-Reserve (RTR) control packet to at least a first intermediate device identified along the path,- receiving a first Reservation Confirm (RC) packet from the at least a first intermediate device in response to the RTR packet, the first RC packet including a schedule; transmitting a second RC packet to the at least a first intermediate device in response to the first RC packet; and corresponding apparatus and computer- readable mediumware also claimed.