Abstract:
Techniques are described herein for classifying multiple device states using separate Bayesian classifiers. An example of a method described herein includes accessing sensor information of a device, wherein at least some of the sensor information is used in a first feature set and at least some of the sensor information is used in a second feature set; processing the first feature set using a first classification algorithm configured to determine a first proposed state of a first state type and a first proposed state of a second state type; processing the second feature set using a second classification algorithm configured to determine a second proposed state of the first state type and a second proposed state of the second state type; and determining a proposed state of the device as the first proposed state of the first state type and the second proposed state of the second state type.
Abstract:
Techniques are described herein for classifying multiple device states using separate Bayesian classifiers. An example of a method described herein includes accessing sensor information of a device, wherein at least some of the sensor information is used in a first feature set and at least some of the sensor information is used in a second feature set; processing the first feature set using a first classification algorithm configured to determine a first proposed state of a first state type and a first proposed state of a second state type; processing the second feature set using a second classification algorithm configured to determine a second proposed state of the first state type and a second proposed state of the second state type; and determining a proposed state of the device as the first proposed state of the first state type and the second proposed state of the second state type.
Abstract:
In a multi-level power transmission scheme, an access point transmits at one power level, while repeatedly transmitting at a burst power level for short periods of time. For example, a femto cell may transmit a beacon with periodic high power bursts of short duration, while the femto cell transmit power also undergoes high power bursts aligned with the beacon bursts. In a network listen-based power control scheme, an access point listens for one or more parameters sent over-the-air by the network and then defines transmit power based on the received parameter(s). In some aspects, beacon transmit power may be set based on a defined outage radius parameter and the total received signal power on a channel. In some aspects, access point transmit power may be set based on a defined coverage parameter and the received energy associated with signals from access points of a certain type.
Abstract:
A mobile device may determine a material-type of a surface proximate to the device and/or a distance between the device and the proximate surface, in at least one implementation. In some implementations, proximate material-type information may be used to estimate a distance between a mobile device and a proximate surface. A material class may also be determined for a proximate surface in some implementations. Various context-based applications are disclosed for material-type, material class, and/or distance information in connection with a mobile device.
Abstract:
A mobile device may determine a material-type of a surface proximate to the device and/or a distance between the device and the proximate surface, in at least one implementation. In some implementations, proximate material-type information may be used to estimate a distance between a mobile device and a proximate surface. A material class may also be determined for a proximate surface in some implementations. Various context-based applications are disclosed for material-type, material class, and/or distance information in connection with a mobile device.
Abstract:
Systems and methodologies are described that facilitate identifying peers based upon encoded signals during peer discovery in a peer to peer network. For example, direct signaling that partitions a time-frequency resource into a number of segments can be utilized to communicate an identifier within a peer discovery interval; thus, a particular segment selected for transmission can signal a portion of the identifier, while a remainder can be signaled based upon tones communicated within the selected segment. Moreover, a subset of symbols within the resource can be reserved (e.g., unused) to enable identifying and/or correcting timing offset. Further, signaling can be effectuated over a plurality of peer discovery intervals such that partial identifiers communicated during each of the peer discovery intervals can be linked (e.g., based upon overlapping bits and/or bloom filter information).