Abstract:
This disclosure provides systems, methods, and apparatus for antenna switching. In one embodiment, a wireless communication apparatus is provided. The wireless communication apparatus includes a plurality of antennas including a first antenna and a second antenna. The wireless communication apparatus further includes at least one receive circuit including a first receive circuit. The wireless communication apparatus further includes a controller configured to selectively switch the first receive circuit from receiving wireless communications via the first antenna to receive wireless communications via the second antenna if one or more performance characteristics of the first antenna are below a threshold in one or more measurement cycles, the one or more measurement cycles including a wake-up cycle outside of a predetermined wake-up cycle. Other aspects, embodiments, and features are also claimed and described.
Abstract:
TDD devices may transmit using multiple antennas. First and second antennas having first and second receive conditions may receive a communication. In an aspect, first and second transmit conditions for the first and second antennas may be determined based on the first and second receive conditions. In an aspect, the first and second transmit conditions may be compared to select the first or second antenna for transmissions. In an aspect, the first and second receive conditions may be compared to select the first or second antenna for transmissions. In an aspect, first and second transmission conditioning values, which may determine transmission powers, may be determined based on the first and second receive conditions. A first transmission chain, associated with an active radio access technology (RAT) or carrier, and a second transmission chain, associated with an inactive RAT or carrier, may be activated to send transmissions from the first and second antennas.
Abstract:
Aspects of the methods and apparatus relate to improving the overall decision quality of the Fractional-Dedicated Physical Channel (F-DPCH) channel. One aspect of the methods and apparatus relates to detecting bad channel conditions of a serving base station and improving the serving base station F-DPCH decoding performance in such bad conditions based on the serving base station signal-to interference ratio (SIR) estimation. Another aspect of the methods and apparatus relate to improving the overall decision quality of the F-DPCH channel in soft handover (HO) scenarios by increasing the non-serving base station F-DPCH channel rejections thresholds based on certain SIR estimations. The F-DPCH channel rejections thresholds are based on either the SIR of the non-serving base station, or a difference between non-serving base station SIR and serving base station SIR.