Abstract:
PROBLEM TO BE SOLVED: To provide a video demultiplexer and a decoder using efficient data recovery. SOLUTION: A demultiplexer detects a boundary between a plurality of physical layer data units and adds boundary information to a bit stream. The demultiplexer generates adaptation layer data units to generate an application layer bit stream. When the video decoder encounters an error in the bit stream, it uses the boundary information to limit the amount of data that should be concealed. In particular, the boundary information permits the error to be associated with a small segment of data. A video decoder conceals data from the beginning of the segment of data rather than an entire slice or frame in which the segment resides. In this manner, the video decoder provides efficient data recover, thereby limiting the loss of useful data that otherwise may be purposely discarded for concealment purpose. COPYRIGHT: (C)2011,JPO&INPIT
Abstract:
The disclosure relates to reverse link lower layer assisted video error control. A method may encode video data, form a packet with the encoded video data, and transmit the packet across a wireless channel to an access network. A medium access control (MAC) layer may receive a negative acknowledgement (NAK) from the access network. The method may determine whether the received NAK is associated with a packet that contains video data. If the received NAK is associated with a packet that contains video data, the method may perform error control.
Abstract:
The disclosure relates to reverse link lower layer assisted video error control. A method may encode video data, form a packet with the encoded video data, and transmit the packet across a wireless channel to an access network. A medium access control (MAC) layer may receive a negative acknowledgement (NAK) from the access network. The method may determine whether the received NAK is associated with a packet that contains video data. If the received NAK is associated with a packet that contains video data, the method may perform error control.
Abstract:
The disclosure relates to reverse link lower layer assisted video error control. A method may encode video data, form a packet with the encoded video data, and transmit the packet across a wireless channel to an access network. A medium access control (MAC) layer may receive a negative acknowledgement (NAK) from the access network. The method may determine whether the received NAK is associated with a packet that contains video data. If the received NAK is associated with a packet that contains video data, the method may perform error control.
Abstract:
The disclosure relates to video rate adaptation techniques that may use i nformation from a medium access control (MAC) layer and radio link protocol (RLP) layer. The techniques may greatly reduce video delay by adjusting vide o encoding rate. For real-time video telephony (VT) applications, these tech niques may provide graceful quality degradation and improve user experience, especially when the channel conditions degrade.
Abstract:
The disclosure relates to video rate adaptation techniques that may use information from a medium access control (MAC) layer and radio link protocol (RLP) layer. The techniques may greatly reduce video delay by adjusting video encoding rate. For real-time video telephony (VT) applications, these techniques may provide graceful quality degradation and improve user experience, especially when the channel conditions degrade.
Abstract:
One technique for implementing error control in response to a video data error comprises receiving an indication of a video data error from a video decoder, determining whether the video data error occurred on a reverse link of a wireless network between a video encoder and a network device, and applying error control in response to the video data error if the video data error did not occur on the reverse link. For example, the indication of the video data error may include a first sequence number (SN) of a packet comprising lost data, and determining whether the video data error occurred on the reverse link may include comparing first SN with a second SN of a packet associated with a most recent RL error.
Abstract:
The disclosure is directed to techniques for region-of-interest (ROI) processing for video telephone (VT) applications. According to the disclosed techniques, a recipient device defines ROI information for video information transmitted by a sender device, i.e., far-end video information. The recipient device transmits the ROI information to the sender device. Using the ROI information transmitted by the recipient device, the sender device applies preferential encoding to an ROI within a video scene. In this manner, the recipient device is able to remotely control ROI encoding of far-end video information by the sender device.
Abstract:
The disclosure is directed to techniques for region-of-interest (ROI) processing for video telephony (VT) applications. According to the disclosed techniques, a recipient device defines ROI information for video information transmitted by a sender device, i.e., far-end video information. The recipient device transmits the ROI information to the sender device. Using the ROI information transmitted by the recipient device, the sender device applies preferential encoding to an ROI within a video scene. ROI extraction may be applied to process a user description of a region of interest (ROI) to generate information specifying the ROI based on the description. The user description may be textual, graphical, or speech-based. An extraction module applies appropriate processing to generated the ROI information from the user description. The extraction module may locally reside with a video communication device, or reside in a distinct intermediate server configured for ROI extraction.