Abstract:
PROBLEM TO BE SOLVED: To provide a method and system for generating and encoding line spectrum square roots. SOLUTION: The method of encoding linear prediction coefficient data is taught. The linear prediction coefficient data is converted to line spectrum cosine data (103). The line spectrum cosine data is used for generating two recursively defined vectors (104). The recursively defined vectors are used to calculate one set of sensitivity self-correlation values (106a-106N) and one set of sensitivity crosscorreations (107a-107N). The line spectrum cosine values are used for calculating one set of the line spectrum square roots. COPYRIGHT: (C)2003,JPO
Abstract:
La presente invencion enseña un método para la codificacion de datos de coeficiente predictivo lineal. La presente invencion transforma el dato de coeficiente predictivo lineal en un dato de coseno de espectro de línea (103). El dato de coseno de espectro de línea se utiliza para generar dos vectores definidos de manera recurrente (104). Los vectores definidos de manera recurrente se utilizan para calcular un conjunto de valores de autocorreccion de sensibilidad (106a-16N) y un conjunto de correlacion de cruce de sensibilidad (107a-107N). Los valores de coseno de espectro de línea se utilizan para calcular un conjunto de valores de raíz cuadrada de espectro de línea.
Abstract:
A novel and improved method and apparatus for encoding line predictive coding (LPC) data in a speech compression system using line spectral square root values is disclosed. A novel and computationally efficient procedure for determining the set of quantization sensitivities for the line spectral square root values is disclosed, which results in a computationally efficient error measure for use in vector quantization of the line spectral square root values. A novel method of weighting the quantization error is disclosed, which accumulates the quantization error in each line spectral square root value and weights that error by the sensitivity of that line spectral square root value.\!
Abstract:
A novel and improved method and apparatus for encoding line predictive coding (LPC) data in a speech compression system using line spectral square root values is disclosed. A novel and computationally efficient procedure for determining the set of quantization sensitivities for the line spectral square root values is disclosed, which results in a computationally efficient error measure for use in vector quantization of the line spectral square root values. A novel method of weighting the quantization error is disclosed, which accumulates the quantization error in each line spectral square root value and weights that error by the sensitivity of that line spectral square root value.\!
Abstract:
A novel and improved method and apparatus for encoding line predictive coding (LPC) data in a speech compression system using line spectral square root values is disclosed. A novel and computationally efficient procedure for determining the set of quantization sensitivities for the line spectral square root values is disclosed, which results in a computationally efficient error measure for use in vector quantization of the line spectral square root values. A novel method of weighting the quantization error is disclosed, which accumulates the quantization error in each line spectral square root value and weights that error by the sensitivity of that line spectral square root value.\!
Abstract:
The present invention teaches of a method of encoding linear predictive coefficient data. The present invention transforms the linear predictive coefficient data into line spectral cosine data (103). The line spectral cosine data is used to generate two recursively defined vectors (104). The recursively defined vectors are used to compute a set of sensitivity autocorrelation values (106a-106N) and a set of sensitivity cross correlation (107a-107N). The line spectral cosine values are used to compute a set of line spectral square root values.
Abstract:
A novel and improved method and apparatus for encoding line predictive coding (LPC) data in a speech compression system using line spectral square root values is disclosed. A novel and computationally efficient procedure for determining the set of quantization sensitivities for the line spectral square root values is disclosed, which results in a computationally efficient error measure for use in vector quantization of the line spectral square root values. A novel method of weighting the quantization error is disclosed, which accumulates the quantization error in each line spectral square root value and weights that error by the sensitivity of that line spectral square root value.\!
Abstract:
A novel and improved method and apparatus for encoding line predictive coding (LPC) data in a speech compression system using line spectral square root values is disclosed. A novel and computationally efficient procedure for determining the set of quantization sensitivities for the line spectral square root values is disclosed, which results in a computationally efficient error measure for use in vector quantization of the line spectral square root values. A novel method of weighting the quantization error is disclosed, which accumulates the quantization error in each line spectral square root value and weights that error by the sensitivity of that line spectral square root value.\!
Abstract:
A novel and improved method and apparatus for encoding line predictive coding (LPC) data in a speech compression system using line spectral square root values is disclosed. A novel and computationally efficient procedure for determining the set of quantization sensitivities for the line spectral square root values is disclosed, which results in a computationally efficient error measure for use in vector quantization of the line spectral square root values. A novel method of weighting the quantization error is disclosed, which accumulates the quantization error in each line spectral square root value and weights that error by the sensitivity of that line spectral square root value.\!
Abstract:
A novel and improved method and apparatus for encoding line predictive coding (LPC) data in a speech compression system using line spectral square root values is disclosed. A novel and computationally efficient procedure for determining the set of quantization sensitivities for the line spectral square root values is disclosed, which results in a computationally efficient error measure for use in vector quantization of the line spectral square root values. A novel method of weighting the quantization error is disclosed, which accumulates the quantization error in each line spectral square root value and weights that error by the sensitivity of that line spectral square root value.\!