Abstract:
Disclosed are methods, systems and/or devices to calibrate a network time by acquisition of satellite positioning system (SPS) signals and different instances of time, and time-tagging SPS times according to the network time. In particular, the network time may be calibrated based, at least in part, on a first difference between first and second SPS times obtained at two SPS position fixes and a second difference between corresponding first and second time stamps.
Abstract:
Disclosed are methods, systems and/or devices to calibrate a network time by acquisition of satellite positioning system (SPS) signals and different instances of time, and time-tagging SPS times according to the network time. In particular, the network time may be calibrated based, at least in part, on a first difference between first and second SPS times obtained at two SPS position fixes and a second difference between corresponding first and second time stamps.
Abstract:
A method in a mobile device includes: receiving location signals at the mobile device; measuring sensor data at the mobile device; determining an oscillation rate of the mobile device from the sensor data; in response to the oscillation rate of the mobile device being undesirable, at least one of: (1) determining a desired sampling rate based on the oscillation rate, the desired sampling rate being different from the oscillation rate; and sampling the location signals at the mobile device at the desired sampling rate; (2) sampling the location signals at the mobile device at a randomized sampling rate; (3) disabling a power improvement technique; (4) increasing filtering of determined course information; (5) reducing a nominal filter bandwidth; or (6) increasing a present sampling rate of the location signals to satisfy Nyquist criteria for the oscillation rate; and determining the position associated with the mobile device using the location signals.
Abstract:
Methods and apparatuses are provided that may be implemented in various electronic devices to possibly reduce a first-time-to-fix and/or otherwise increase the performance or efficiency of a device by employing a position/velocity estimation process using at least one estimated time relationship parameter.
Abstract:
Techniques for managing power consumption of a Global Navigation Satellite System (GNSS) receiver of a mobile device are provided. These techniques include a method that includes deriving a GNSS search window for the GNSS receiver based on a position uncertainty (PUNC) and a time uncertainty (TUNC), selecting a GNSS search mode based on the GNSS search window and resources available for searching for signals from GNSS satellite vehicles (SVs), wherein an estimated power consumption associated with execution of a GNSS search associated with the GNSS search mode does not exceed a power consumption limit specified for the GNSS receiver conducting the GNSS search using the GNSS search mode, and estimating a position of the mobile device.
Abstract:
Methods and apparatuses are provided that may be implemented in various electronic devices to possibly reduce a first-time-to-fix and/or otherwise increase the performance or efficiency of a device by using portions of system time identifiers from different systems to determine at least one navigation system time.