Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may be communicating with a base station via beamformed transmissions on an active beam. The UE may receive from the base station refined reference signals (RRSs) that include an active beam RRS corresponding to the active beam. The UE may identify that the active beam RRS corresponds to the active beam and perform a beam state measurement on the active beam RRS. The UE may refine the active beam based at least in part on the beam state information of the active beam RRS.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may be communicating with a base station via beamformed transmissions on an active beam. The UE may receive from the base station refined reference signals (RRSs) that include an active beam RRS corresponding to the active beam. The UE may identify that the active beam RRS corresponds to the active beam and perform a beam state measurement on the active beam RRS. The UE may refine the active beam based at least in part on the beam state information of the active beam RRS.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may be communicating with a base station via beamformed transmissions on an active beam. The UE may receive from the base station refined reference signals (RRSs) that include an active beam RRS corresponding to the active beam. The UE may identify that the active beam RRS corresponds to the active beam and perform a beam state measurement on the active beam RRS. The UE may refine the active beam based at least in part on the beam state information of the active beam RRS.
Abstract:
Methods, systems, and devices for wireless communication are described. Techniques to use capability information for user equipment in wide band systems such as millimeter wave systems. The capability information can include information indicative of support for limited non-contiguous intra-band carrier aggregation. The capability information can include information indicative of support for sharing time and frequency tracking information between cells.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may be communicating with a base station via beamformed transmissions on an active beam. The UE may receive from the base station refined reference signals (RRSs) that include an active beam RRS corresponding to the active beam. The UE may identify that the active beam RRS corresponds to the active beam and perform a beam state measurement on the active beam RRS. The UE may refine the active beam based at least in part on the beam state information of the active beam RRS.
Abstract:
Techniques for correcting sampling frequency offset (SFO) and carrier frequency offset (CFO) in a wireless communication system are disclosed. An apparatus for correcting SFO and CFO may include a pilot tone extractor for extracting a plurality of pilot tones from one or more first symbols, a demodulator, an error signal generator, a loop filter, an angle generator, and a device for applying a correction phase to one or more symbols subsequent to the one or more first symbols. The demodulator is configured to demodulate the pilot tones. The error signal generator is configured to generate an error signal by summing and calculating the arctangent of the plurality of demodulated pilot tones. The loop filter is configured to generate an estimated phase rotation due to a residual CFO and the angle generator is configured to generate a correction phase for the plurality of tones.
Abstract:
Exemplary embodiments are related to two-dimensional maximum power compensation. A method may include calibrating an output power level of a transmitter across a range of frequencies at a constant temperature. The method may further include characterizing the output power level of the transmitter for each temperature of a plurality of temperatures for each frequency of the range of frequencies.
Abstract:
A dual frequency synthesizer architecture for a wireless device operating in a time division duplex (TDD) mode is disclosed. In an exemplary design, the wireless device includes first and second frequency synthesizers. The first frequency synthesizer generates a first oscillator signal used to generate a first/receive local oscillator (LO) signal at an LO frequency for the receiver. The second frequency synthesizer generates a second oscillator signal used to generate a second/transmit LO signal at the same LO frequency for the transmitter. The two frequency synthesizers generate their oscillator signals to obtain receive and transmit LO signals at the same LO frequency when the wireless device operates in the TDD mode.