Abstract:
A physical layer frequency translating repeater (600, 700) for use in a wireless network includes signal processor (710-714) coupled with a signal processing bus (711), a processor (627) and a memory (650). The physical layer repeater conducts physical layer repeating and selectively conducts layer 2 and possibly layer 3 functions depending on network conditions and other factors. A demodulator (623) can extract address information such as media access control (MAC) addressing to enable packets to be redirected, terminated, stored and forwarded, if necessary, based on network conditions.
Abstract:
Disclosed are methods and apparatus for transmitting sensor timing correction messages with a host controller. The methods and apparatus determine synchronization messages that are transmitted to a sensor coupled with the host controller via an interface, where the messages indicate a beginning of a synchronization period for synchronizing timing of the host controller and the sensor. Additionally, a delay time message is determined that indicates a time delay between the beginning of the synchronization period and an actual transmission time of the synchronization message. The synchronization message is transmitted with the delay time message in an information message to the sensor, where information message is configured to allow the sensor to correct timing of a sensor timer by accounting for the delay time.
Abstract:
A physical layer frequency translating repeater (600, 700) for use in a wireless network includes signal processor (710-714) coupled with a signal processing bus (711), a processor (627) and a memory (650). The physical layer repeater conducts physical layer repeating and selectively conducts layer 2 and possibly layer 3 functions depending on network conditions and other factors. A demodulator (623) can extract address information such as media access control (MAC) addressing to enable packets to be redirected, terminated, stored and forwarded, if necessary, based on network conditions.
Abstract:
Disclosed are methods and apparatus for synchronizing a controller and sensors in a system. A timestamp is provided in a host controller of an interface event on an interface coupled with host controller through detecting a message from a sensor on the interface that identifies the issuance of the interface event caused by the sensor at a first time. In response, the controller issues first and second events on the interface at respective second and third times, while concurrently counting cycles of a clock in the controller after each issuance. The controller also receives a first and second sensor counts representing the internal sensor clock times noted for the first and second events. The controller may then accurately calculate the timestamp of the interface event corresponding to the first time based on both internal controller counts and the sensor counts without needing a timestamp from the sensor directly.
Abstract:
Aspects of the disclosure relate to computing device technologies, such as systems, methods, apparatuses, and computer-readable media for improving orientation data. In some embodiments, a magnetic vector filter receives magnetometer data from a magnetometer and gyroscope data from a gyroscope and determines the magnetic vector. In another embodiment, a gravity vector filter receives accelerometer data and gyroscope data and determines the gravity vector. Further techniques are described for adjusting filter parameters, based at least in part on the detected change in the variability of the first signal parameter. Furthermore, orientation may be synchronized to a common sensor input, such as a gyroscope.
Abstract:
A physical layer frequency translating repeater (600, 700) for use in a wireless network includes signal processor (710-714) coupled with a signal processing bus (711), a processor (627) and a memory (650). The physical layer repeater conducts physical layer repeating and selectively conducts layer 2 and possibly layer 3 functions depending on network conditions and other factors. A demodulator (623) can extract address information such as media access control (MAC) addressing to enable packets to be redirected, terminated, stored and forwarded, if necessary, based on network conditions.
Abstract:
Disclosed are methods and apparatus for synchronizing a controller and sensors in a system. A timestamp is provided in a host controller of an interface event on an interface coupled with host controller through detecting a message from a sensor on the interface that identifies the issuance of the interface event caused by the sensor at a first time. In response, the controller issues first and second events on the interface at respective second and third times, while concurrently counting cycles of a clock in the controller after each issuance. The controller also receives a first and second sensor counts representing the internal sensor clock times noted for the first and second events. The controller may then accurately calculate the timestamp of the interface event corresponding to the first time based on both internal controller counts and the sensor counts without needing a timestamp from the sensor directly.
Abstract:
Aspects of the disclosure relate to computing device technologies, such as systems, methods, apparatuses, and computer-readable media for improving orientation data. In some embodiments, a magnetic vector filter receives magnetometer data from a magnetometer and gyroscope data from a gyroscope and determines the magnetic vector. In another embodiment, a gravity vector filter receives accelerometer data and gyroscope data and determines the gravity vector. Further techniques are described for adjusting filter parameters, based at least in part on the detected change in the variability of the first signal parameter. Furthermore, orientation may be synchronized to a common sensor input, such as a gyroscope.