Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may determine location information regarding the UE; and activate a receive beam of the UE in at least one symbol, associated with at least one transmit beam of at least one base station, based at least in part on the location information, wherein the UE is configured to activate the receive beam based at least in part on mapping information, at least partially determined by the UE, that indicates that the receive beam is associated with the location information. Numerous other aspects are provided.
Abstract:
Certain embodiments provide techniques for back-ground scanning in a wireless communication device receiving signals from multiple base stations using a background scanning processor separate from a receive processor. The techniques generally include buffering raw signal data from multiple base stations, forwarding the raw signal data to a receive baseband processor for decoding data from a first one of the base stations that is currently designated as a serving base station with an active connection to the wireless communications device, forwarding the raw signal data to a background scanning pro-cessor, separate from the receive baseband processor, and generating channel characteristics corresponding to the multiple base stations with the background scanning processor without interrupting the exchange of data with the first base station designated as the serving base station.
Abstract:
Certain embodiments provide techniques for background scanning in a wireless communication device receiving signals from multiple base stations using a background scanning processor separate from a receive processor. The techniques generally include buffering raw signal data from multiple base stations, forwarding the raw signal data to a receive baseband processor for decoding data from a first one of the base stations that is currently designated as a serving base station with an active connection to the wireless communications device, forwarding the raw signal data to a background scanning processor, separate from the receive baseband processor, and generating channel characteristics corresponding to the multiple base stations with the background scanning processor without interrupting the exchange of data with the first base station designated as the serving base station.
Abstract:
Certain embodiments allow security keys to be maintained across mobile device states, or communication events, such as hand-over, and system idle and sleep power savings modes. By monitoring the lifetime of security keys, keys may be refreshed in an effort to ensure key lifetimes will not expire during a hand-over process or other device unavailable state.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may determine location information regarding the UE; and activate a receive beam of the UE in at least one symbol, associated with at least one transmit beam of at least one base station, based at least in part on the location information, wherein the UE is configured to activate the receive beam based at least in part on mapping information, at least partially determined by the UE, that indicates that the receive beam is associated with the location information. Numerous other aspects are provided.
Abstract:
Certain embodiments allow security keys to be maintained across mobile device states, or communication events, such as hand-over, and system idle and sleep power savings modes. By monitoring the lifetime of security keys, keys may be refreshed in an effort to ensure key lifetimes will not expire during a hand-over process or other device unavailable state.
Abstract:
Techniques presented herein allow a wireless device, (e.g., a mobile station, MS) to automatically enter a low power state when detecting silence based on monitored VoIP transmissions. Automatically entering the low power state may help the wireless device conserve power. In addition, for certain types of scheduling services in which bandwidth is allocated to the wireless device from within a system (e.g., Unsolicited Grant Service or extended real time polling service), automatically entering the low power state when silence is detected may also free up bandwidth (i.e., that would have otherwise been allocated to the wireless device entering the low power state) for allocation to other wireless devices in the system.