Abstract:
3GPP TS 25.214 V7.7.0에 따라 HS-SCCH-없는(HSL) 동작 동안에 무선 데이터 채널 HS-DSCH 상에서 수신되는 데이터 전송의 프로세싱에서, 상황은 무선 제어 채널 HS-SCCH로부터 획득될 수 없는 수신되는 데이터 전송에 대응하는 리던던시 버전 정보에서 식별된다. 상기 리던던시 버전 정보는 일반적으로 상기 수신되는 데이터 전송에 대한 디레이트 매칭을 규정하는 HSL 리던던시 버전을 표시한다. 상기 상황의 식별에 응답하여, 디레이트 매칭은 상기 상황에서 디레이트 매칭에 대하여 HSL에 의하여 규정되는 상기 HSL 리던던시 버전 이외의 HSL 리던던시 버전에 따라 상기 수신되는 데이터 전송에 적용된다.
Abstract:
Systems and methodologies are described that facilitate efficient power control command management in a wireless communication environment. As described herein, techniques can be utilized by a Node B and/or other network access point to compensate for differences between uplink slot boundaries and a power control command combining period associated with the uplink slot. For example, the timing of Transmitter Power Control (TPC) bit transmission can be altered as described herein such that, if a given cell or cell sector is associated with a radio link set of size 2 or greater and a TPC timing offset of size 2 or less, TPC command information can be buffered and/or otherwise delayed to a slot following the slot in which corresponding channel measurements are obtained in order to prevent efficiency loss associated with combining TPC bits of inverse polarity corresponding to multiple disparate slots.
Abstract:
Methods and apparatus are presented for H ARQ process dynamic memory management. A method for dynamically managing memory for storing data associated with H ARQ processes is presented, which includes receiving a packet associated with a H-ARQ process, determining if a free memory location is available in a H-ARQ buffer, assigning the packet to the free memory location, determining if the packet was successfully decoded, and retaining the packet in the assigned memory location for combination with a subsequent packet retransmission if the packet was not successfully decoded. Also presented are apparatus having logic configured to perform the presented methods.
Abstract:
Methods and apparatus are presented for H-ARQ process dynamic memory management. A method for dynamically managing memory for storing data associated with H-ARQ processes is presented, which includes receiving a packet associated with a H-ARQ process, determining if a free memory location is available in a H-ARQ buffer, assigning the packet to the free memory location, determining if the packet was successfully decoded, and retaining the packet in the assigned memory location for combination with a subsequent packet retransmission if the packet was not successfully decoded. Also presented are apparatus having logic configured to perform the presented methods.
Abstract:
Systems and methodologies are described that facilitate efficient power control command management in a wireless communication environment. As described herein, techniques can be utilized by a Node B and/or other network access point to compensate for differences between uplink slot boundaries and a power control command combining period associated with the uplink slot. For example, the timing of Transmitter Power Control (TPC) bit transmission can be altered as described herein such that, if a given cell or cell sector is associated with a radio link set of size 2 or greater and a TPC timing offset of size 2 or less, TPC command information can be buffered and/or otherwise delayed to a slot following the slot in which corresponding channel measurements are obtained in order to prevent efficiency loss associated with combining TPC bits of inverse polarity corresponding to multiple disparate slots.
Abstract:
Methods and apparatus are presented for H-ARQ process dynamic memory management. A method for dynamically managing memory for storing data associated with H-ARQ processes is presented, which includes receiving a packet associated with a H-ARQ process, determining if a free memory location is available in a H-ARQ buffer, assigning the packet to the free memory location, determining if the packet was successfully decoded, and retaining the packet in the assigned memory location for combination with a subsequent packet retransmission if the packet was not successfully decoded. Also presented are apparatus having logic configured to perform the presented methods.
Abstract:
Techniques for efficiently and accurately computing log-likelihood ratio (LLRs) for code bits are described. A set of code bits may be mapped to a modulation symbol in a signal constellation. Different code bits in the set may be associated with different LLR functions. A receiver obtains received symbols for a transmission sent via a communication channel. The receiver derives LLRs for code bits based on the received symbols and piecewise linear approximation of at least one LLR function. The piecewise linear approximation of each LLR function may comprise one or more linear functions for one or more ranges of input values. The receiver may select one of the linear functions for each code bit based on a corresponding received symbol component value. The receiver may then derive an LLR for each code bit based on the linear function selected for that first code bit.
Abstract:
Techniques for scaling symbols to account for large abrupt changes in received power at a user equipment (UE) are described. The UE performs AGC on received samples to obtain input samples. The UE processes (e.g., CDMA demodulates) the input samples to obtain first symbols. The UE determines the power of the input samples and derives a symbol gain based on (e.g., inversely related to) the power of the input samples. The UE scales the first symbols with the symbol gain to obtain detected data symbols having approximately constant amplitude, even with large abrupt changes in the power of the input samples. The UE estimates signal amplitude and noise variance based on the detected data symbols, computes LLRs for code bits of the detected data symbols based on the signal amplitude and noise variance, and decodes the LLRs to obtain decoded data.