Abstract:
PROBLEM TO BE SOLVED: To provide techniques for selecting a proper set of user terminals for simultaneous transmission, and transmitting and receiving data between the selected user terminals. SOLUTION: An uplink channel response matrix is obtained for each terminal and decomposed to obtain a steering vector for use by the terminal to transmit on the uplink. An "effective" uplink channel response vector is formed for each terminal based on its steering vector and its channel response matrix. Multiple sets of terminals are evaluated based on their effective channel response vectors to determine the best set for uplink transmission. Each selected terminal performs spatial processing on its data symbol stream with its steering vector and transmits its spatially processed data symbol stream to an access point. The multiple selected terminals simultaneously transmit their data symbol streams via their respective MIMO channels to the access point. COPYRIGHT: (C)2010,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide a method and a device to compute the combiner coefficients for a space-time solution of a wireless communication system. SOLUTION: Weights of signals are adjusted using known a priori that is time-division-multiplexed with other signals such as a pilot signal etc. in a high data rate HDR system in which signals are transmitted at full power. The MMSE (minimum mean squared error) method is applied, which enables weight combination on a path-by-path base. The weight is computed as a function of a noise correlation matrix and a spatial signature per path. The noise correlation matrix is computed from an autocorrelation matrix of the received signal. In one embodiment, the MMSE method is applied in such a way that the MMSE method uses a non-time-gated pilot signal. COPYRIGHT: (C)2010,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide a steering vector which is used by a terminal for transmission on the uplink by obtaining and decomposing an uplink channel response matrix for each terminal. SOLUTION: An "effective" uplink channel response vector is formed for each terminal based on its steering vector and its channel response matrix. Multiple sets of terminals are evaluated based on their effective channel response vectors to determine the best set for uplink transmission. Each selected terminal performs spatial processing on its data symbol stream with its steering vector and transmits its spatially processed data symbol stream to an access point. The multiple selected terminals simultaneously transmit their data symbol streams via their respective MIMO channels to the access point. The access point performs receiver spatial processing to its received symbol streams. COPYRIGHT: (C)2010,JPO&INPIT
Abstract:
Shared spectrum operation is disclosed for sharing spectrum among multiple wireless deployments. Coordination procedures between and among 2nd and 3rd Tier deployments include the use of beacons transmitted by the 2nd Tier for clearing access to spectrum occupied by 3rd Tier users and multiple 3rd Tier deployments sharing resources using a group-listen before talk (LBT) protocol, rather than a per-node LBT protocol. The 2nd Tier beacon signals are transmitted to alert 3rd Tier users of their presence, which, upon detection, will leave the particular spectrum within a predetermined time. For the shared LBT protocol, the 3rd Tier deployments share the channel with each other through an LBT with random backoff, in which the start time of clear channel assessment (CCA) procedure and the random backoff values are synchronized among nodes of the same deployment.
Abstract:
Adaptive signaling (e.g., pilot signaling, control signaling, or data signaling) is disclosed in which resources allocated to one or more symbols are allowed to vary to more closely match channel conditions and data latency requirements. In one embodiment, a method includes determining that low-latency data is available to transmit during a first transmission time interval (TTI) and informing a mobile station that the low-latency data will be transmitted during one slot reserved for a symbol in the first TTI. The low-latency data may be transmitted during the first time slot in the first TTI and the symbol (originally scheduled symbols) may be transmitted during a second time slot.
Abstract:
Shared spectrum operation is disclosed for sharing spectrum among multiple wireless deployments. Coordination procedures between and among 2nd and 3rd Tier deployments include the use of beacons transmitted by the 2nd Tier for clearing access to spectrum occupied by 3rd Tier users and multiple 3rd Tier deployments sharing resources using a group-listen before talk (LBT) protocol, rather than a per-node LBT protocol. The 2nd Tier beacon signals are transmitted to alert 3rd Tier users of their presence, which, upon detection, will leave the particular spectrum within a predetermined time. For the shared LBT protocol, the 3rd Tier deployments share the channel with each other through an LBT with random backoff, in which the start time of clear channel assessment (CCA) procedure and the random backoff values are synchronized among nodes of the same deployment.
Abstract:
In an aspect of the disclosure, a method, a computer program product, and an apparatus are provided. The method may be performed by a scheduling entity. The scheduling entity transmits control information in a control portion of the subframe, the control information corresponding to data information within the subframe, transmits the data information in a data portion of the subframe, receives a pilot signal from the set of subordinate entities in a pilot portion of the subframe, and receives an ACK/NACK signal from the set of subordinate entities in an ACK portion of the subframe. The ACK portion is subsequent to the pilot portion of the subframe. The ACK/NACK signal includes acknowledgment information corresponding to the data information. The control portion, the data portion, the pilot portion, and the ACK portion are contained in the same subframe.
Abstract:
Aspectos de la presente divulgación permiten el emparejamiento de una portadora inter-banda con una portadora de duplexión por división de tiempo (TDD); si la banda emparejada es una banda de duplexión por división de frecuencia (FDD), entonces estaciones base y dispositivos móviles pueden transmitir y recibir canales de control delgados adicionales en las portadoras FDD para permitir operaciones dúplex completo; si la banda emparejada es una banda TDD, entonces una portadora conjugada o inversa puede ser utilizada de manera que se logre el dúplex completo o una aproximación cercana al mismo; con la introducción de un canal emparejado y canales de control rápido, se puede lograr una rápida conmutación de enlace ascendente/enlace descendente para portadoras TDD de manera eficiente y efectiva; también se reclaman y describen otros aspectos, modalidades y características.
Abstract:
Un procedimiento realizado en una entidad de programación, para la comunicación inalámbrica a través de una interfaz aérea, comprendiendo el procedimiento: segmentar (1308) un grupo de recursos en una pluralidad de regiones, que incluye una primera región que comprende recursos de frecuencia de tiempo para el acceso al canal asincrónico y una segunda región que comprende recursos de frecuencia de tiempo para el acceso al canal sincrónico, comprendiendo el grupo de recursos un conjunto de recursos de frecuencias de tiempo disponibles para la comunicación inalámbrica a través de la interfaz aérea; determinar una asignación de recursos de frecuencia de tiempo dentro de la interfaz aérea para la comunicación con una o más entidades subordinadas al usar cada una de una pluralidad de entidades de comunicación física en la entidad de programación; controlar cada una de la pluralidad de entidades de comunicación física para multiplexar señales correspondientes a cada una de la pluralidad de entidades de comunicación física, respectivamente, que incluye una primera entidad de comunicación física configurada para la comunicación inalámbrica en la primera región para acceso al canal sincrónico y una segunda entidad de comunicación física configurada para la comunicación inalámbrica en la segunda región para el acceso al canal asincrónico, en el que la primera entidad de comunicación física es diferente de la segunda entidad de comunicación física; y transmitir (1310) un mensaje de señalización a una o más entidades subordinadas, el mensaje de señalización configurado para indicar la asignación de recursos de frecuencia de tiempo dentro de la interfaz aérea, en el que una entidad subordinada es un nodo o dispositivo que recibe información de control de programación.