Abstract:
A method for classifying an object includes applying multiple confidence values to multiple objects. The method also includes determining a metric based on the multiple confidence values. The method further includes determining a classification of a first object from the multiple objects based on a knowledge-graph when the metric is above a threshold.
Abstract:
A method of biasing a deep neural network includes determining whether an element has an increased probability of being present in an input to the network. The method also includes adjusting a bias of activation functions of neurons in the network to increase sensitivity to the element. In one configuration, the bias is adjusted without adjusting weights of the network. The method further includes adjusting an output of the network based on the biasing.
Abstract:
An apparatus for classifying an input includes a classifier and a feature extractor. The feature extractor is configured to generate a feature vector based on the input. The feature vector is also configured to set a number of elements of the feature vector to zero to produce a sparse feature vector. The sparse feature vector has the same dimensions as the feature vector generated by the feature extractor. However, the sparse feature vector includes fewer non-zero elements than the feature vector generated by the feature extractor. The feature vector is further configured to forward the sparse feature vector to the classifier to classify the input.
Abstract:
Certain aspects of the present disclosure provide methods and apparatus for creating tags (static or dynamic) for input/output classes of a neural network model using supervised learning. The method includes augmenting a neural network model with a plurality of neurons and training the augmented network using spike timing dependent plasticity (STDP) to determine one or more tags.
Abstract:
A method of training a neural network model includes determining a specificity of multiple filters after a predetermined number of training iterations. The method also includes training each of the filters based on the specificity.
Abstract:
A method of blink and averted gaze avoidance with a camera includes detecting an averted gaze of a subject and/or one or more closed eyes of the subject in response to receiving an input to actuate a camera shutter. The method also includes scheduling actuation of the camera shutter to a future estimated time period to capture an image of the subject when a gaze direction of the subject is centered on the camera and/or both eyes of the subject are open.
Abstract:
A method of detecting unknown classes is presented and includes generating a first classifier for multiple first classes. In one configuration, an output of the first classifier has a dimension of at least two. The method also includes designing a second classifier to receive the output of the first classifier to decide whether input data belongs to the multiple first classes or at least one second class.
Abstract:
Differential encoding in a neural network includes predicting an activation value for a neuron in the neural network based on at least one previous activation value for the neuron. The encoding further includes encoding a value based on a difference between the predicted activation value and an actual activation value for the neuron in the neural network.