Abstract:
A variable impedance load (104) is provided at the output of a radio frequency (RF) driver amplifier (102) having a variable gain. In an exemplary embodiment, the variable load (104) comprises a resistor (R) in series with a semiconductor device (M 1 ). The semiconductor device (M 1 ) has an impedance level determined by a drive current. The value of the drive current is related to the gain of the RF driver amplifier (102).
Abstract:
A latch includes three circuits. The first circuit drives a first output (QB) to a first level when a first input (D) and a first clock phase (CK) are both low, to a second level when D and CK are both high, and provides high impedance (HI-Z) when different logic levels are applied to D and CK. The second circuit drives a second output (Q) to the first level when a third input (DB) and a complimentary clock phase (CKB) are both low, to the second level when DB and CKB are both high, and provides HI-Z when different logic levels are applied to DB and CKB. The third circuit maintains voltages of Q and QB when the first and second circuits provide HI-Z at Q and QB. Odd-number dividers constructed with such latches produce 50% duty cycle operation without restricting output pulse widths to integer multiples of input periods.
Abstract:
A radio frequency (RF) driver amplifier system and method that provides linear in decibel gain control is provided. The RF driver amplifier system comprises a linear transconductor receiving an input voltage and providing a controlled current based on input voltage received, temperature compensation circuitry for varying current from the linear transconductor according to absolute temperature, an exponential current controller receiving current varied according to temperature and providing an exponential current in response, and an inductive degeneration compensator receiving exponential current and providing a control current to driver amplifier circuitry , thereby compensating for inductive degeneration due to at least one inductor in the driver amplifier circuitry . Control current passes from the inductive degeneration compensator to the driver amplifier circuitry . Output gain from the driver amplifier circuitry varies linearly in decibels with respect to the input voltage.
Abstract:
A variable impedance load (104) is provided at the output of a radio frequency (RF) driver amplifier (102) having a variable gain. In an exemplary embodiment, the variable load (104) comprises a resistor (R) in series with a semiconductor device (M 1 ). The semiconductor device (M 1 ) has an impedance level determined by a drive current. The value of the drive current is related to the gain of the RF driver amplifier (102).
Abstract:
A radio frequency (RF) driver amplifier system and method that provides linear in decibel gain control is provided. The RF driver amplifier system comprises a linear transconductor receiving an input voltage and providing a controlled current based on input voltage received, temperature compensation circuitry for varying current from the linear transconductor according to absolute temperature, an exponential current controller receiving current varied according to temperature and providing an exponential current in response, and an inductive degeneration compensator receiving exponential current and providing a control current to driver amplifier circuitry , thereby compensating for inductive degeneration due to at least one inductor in the driver amplifier circuitry . Control current passes from the inductive degeneration compensator to the driver amplifier circuitry . Output gain from the driver amplifier circuitry varies linearly in decibels with respect to the input voltage.
Abstract:
A latch includes three circuits. The first circuit drives a first output (QB) to a first level when a first input (D) and a first clock phase (CK) are both low, to a second level when D and CK are both high, and provides high impedance (HI-Z) when different logic levels are applied to D and CK. The second circuit drives a second output (Q) to the first level when a third input (DB) and a complimentary clock phase (CKB) are both low, to the second level when DB and CKB are both high, and provides HI-Z when different logic levels are applied to DB and CKB. The third circuit maintains voltages of Q and QB when the first and second circuits provide HI-Z at Q and QB. Odd-number dividers constructed with such latches produce 50% duty cycle operation without restricting output pulse widths to integer multiples of input periods.