Abstract:
Disclosed are methods, systems, devices, servers, apparatus, computer-/processor- readable media, and other implementations, including a method that includes receiving by a device a triggering message from an emergency call server responsive to an indication of an emergency condition at the device to trigger a tracking session to periodically collect and send tracking session data associated with the device to one or more servers, establishing the tracking session, separate from an emergency call session established between the device and the emergency call server, with the one or more servers, and sending, by the device to the one or more servers, the tracking session data collected during the tracking session by the device.
Abstract:
A position determining system (PDS) receiver gathers independent location information from multiple sources. These multiple pieces of location information are analyzed to determine consistency of location. If the location is consistent among the various independently gathered location information, then the location information is injected into the PDS positioning process for more efficient acquisition and positioning. Otherwise, if inconsistency is found, then no location information is injected into the PDS positioning process.
Abstract:
Devices and methods are provided for providing self-timing and self-locating in an access point (AP) base station. In one embodiment, the method involves receiving Satellite Positioning System (SPS) signals from a first data source (e.g., plurality of satellites), wherein the SPS signals may include SPS time data, SPS frequency data, and SPS position data. The method may further involve obtaining from a second data source (e.g., cell site, terrestrial navigation station, server, user input interface, etc.) at least one of second time data, second frequency data and second position data, and determining relative reliability of the first and second data sources.
Abstract:
In one aspect, a method performed by an access point in a wireless local area network (WLAN), includes receiving a first ranging request message from a first device and monitoring for a second ranging request message from a second device on a channel of the WLAN. The first ranging request message includes a device identifier of the first device and the second ranging request message includes a device identifier of the second device. In response to receiving the second ranging request message, the access point combines the device identifier of the first device, first timing information associated with the first ranging request message, the device identifier of the second device, and second timing information associated with the second ranging request message into a single ranging response message. The access point then broadcasts the single ranging response message on the channel of the WLAN.
Abstract:
Method and apparatus for processing access point (AP) crowdsourcing data are disclosed. In one embodiment, the method comprises receiving WiFi scan lists and their corresponding location descriptions, consolidating the WiFi scan lists and their corresponding location descriptions based at least in part on a set of selection criteria to generate a WiFi AP record, and uploading the WiFi AP record to a crowdsourcing server. The method consolidating the WiFi scan lists and their corresponding location descriptions comprises quantizing data received in accordance with time segment of the WiFi scan lists and their corresponding location descriptions. The set of selection criteria comprises a maximum number of scan lists to be uploaded in a predetermined period of time, a maximum number of scan lists to be uploaded in a single upload, ratio of MNoO to remaining unprocessed observations, similarity between scan lists, and comparison of HEPE values between similar scan lists.
Abstract translation:公开了用于处理接入点(AP)众包数据的方法和装置。 在一个实施例中,该方法包括接收WiFi扫描列表及其对应的位置描述,至少部分地基于一组选择标准来合并WiFi扫描列表及其对应的位置描述,以生成WiFi AP记录,并且上载WiFi AP 记录到众包服务器。 整合WiFi扫描列表及其对应的位置描述的方法包括根据WiFi扫描列表的时间段及其对应的位置描述来量化接收的数据。 所述选择标准集合包括在预定时间段内要上载的扫描列表的最大数目,在单次上载中要上传的扫描列表的最大数量,MNoO与剩余的未处理观察值的比例,扫描列表之间的相似度以及 比较相似扫描列表之间的HEPE值。
Abstract:
A method includes receiving a command corresponding to a user input at a user interface of a mobile device. The method includes comparing the received command to a predetermined set of commands associated with determining a location of the mobile device. The method further includes initiating a wireless data signal scan (e.g., prior to receiving an explicit request from Base Station or PDE) to generate a list that identifies wireless data (e.g., non-global positioning system (non-GPS)) signals that are detectable by the mobile device in response to determining that the received command corresponds to at least one command of the predetermined set of commands.
Abstract:
The subject matter disclosed herein relates to determining whether a reported position of a wireless transmitter is sufficiently accurate in accordance with an accuracy metric based at least in part on a calculated range between an estimated position of a mobile station and the reported position and also based at least in part on one or more measurements taken from one or more signals transmitted by the wireless transmitter.
Abstract:
A method and device for managing a reference oscillator within a wireless device is presented. The method includes selecting reference oscillator parameters associated with the lowest reference oscillator error, where the selection is based upon reference oscillator parameters derived using different technologies within a wireless device, acquiring a satellite based upon the selected reference parameters, determining the quality of the satellite-based position fix, and updating the reference oscillator parameters based upon the quality of the satellite-based position fix. The wireless device includes a wireless communications system, a satellite positioning system (SPS) receiver, a reference oscillator connected to the wireless communications system and SPS receiver, and a mobile controller connected to the reference oscillator, SPS, and wireless communications system, and a memory connected to the mobile controller, where the memory stores a reference oscillator parameter table and instructions causing the mobile controller to execute the aforementioned method.
Abstract:
In a radio frequency (RF) receiver, a receiver RF chain is tuned to a first (e.g., global positioning system (GPS)) channel to permit receipt of a first (e.g., GPS) signal over the first (e.g., GPS) channel on the receiver RF chain during a first time duration. The receiver RF chain is tuned to a second (e.g., cellular page) channel to permit receipt of a second (e.g., cellular page) signal over the second (e.g., cellular page) channel on the receiver RF chain during a second time duration, following the first time duration. The first (e.g., GPS) signal is processed during the first time duration and the second time duration, without any apparent interruption of the first (e.g., GPS) signal during the second time duration. The processing, for example, treats the actual interruption as a temporary, short term fade of the first (e.g., GPS) signal during the second time duration, or provides a bridge signal (e.g., an estimated GPS signal on the receiver RF chain or an actual GPS signal received on another receiver RF chain) during the second time duration.
Abstract:
A parameter estimator for estimating one or more parameter(s) from a correlation function derived from a signal using a dynamically variable search window is described. The parameter estimator may be employed in a subscriber station to estimate the time of arrival of one or more base station pilot signals in a wireless communication system. This information may be utilized in an overall advanced forward link trilateration (AFLT) process for estimating the location of the subscriber station.