Abstract:
Method and apparatus for reducing random noise in digital video streams are described. In one innovative aspect, the device includes a noise estimator. The device also includes a motion detector configured to determine a motion value indicative of motion between two frames of the video stream, the motion value based at least in part on the noise value. The device further includes a spatial noise reducer configured to filter the image data based at least in part on a blending factor and the noise value. The device also includes a temporal noise reducer configured to filter the video data based on the motion value and the noise value. The device also includes a blender configured to blend the spatial and temporal filtered values to provide a weighted composite filtered output image.
Abstract:
Method and apparatus for reducing random noise in digital video streams are described. In one innovative aspect, a device for reducing noise of a video stream is provided. The device includes a ringing noise detector configured to identify ringing noise in an image included in the video stream. The device further includes a block detector configured to identify a block pattern in the image included in the video stream, the block detector configured to identify block patterns of a predetermined size and block patterns of an arbitrary size. The device also includes a noise reducer configured to filter the image based on the identified ringing noise and the block pattern.
Abstract:
A method performed by an electronic device is described. The method includes obtaining sensor data corresponding to multiple occupants from an interior of a vehicle. The method also includes obtaining, by a processor, at least one occupant status for at least one of the occupants based on a first portion of the sensor data. The method further includes identifying, by the processor, at least one vehicle operation in response to the at least one occupant status. The method additionally includes determining, by the processor, based at least on a second portion of the sensor data, whether to perform the at least one vehicle operation. The method also includes performing the at least one vehicle operation in a case that it is determined to perform the at least one vehicle operation.
Abstract:
A method of processing data includes receiving, at a computing device, data representative of an image captured by an image sensor. The method also includes determining a first scene clarity score. The method further includes determining whether the first scene clarity score satisfies a threshold, and if the first scene clarity score satisfies the threshold, determining a second scene clarity score based on second data extracted from the data.
Abstract:
Systems and methods for improving the contrast of image frames are disclosed. In one embodiment, a system for improving the contrast of image frames includes a control module configured to create an intensity histogram for an image frame, define a set of markers on an intensity range of the histogram, assign a blend factor to each marker, calculate a blend factor for each original pixel of the image, obtain a first equalized pixel output value, calculate a final equalized pixel output value using the blend factor, the first equalized pixel output value, and an original pixel value, and output new pixel values that constitute the output image.
Abstract:
Systems and methods are disclosed for error correction control (ECC) for a memory device comprising a data portion and an ECC portion, the memory device coupled to a system on a chip (SoC). The SoC includes an ECC cache. On receipt of a request to write a line of data to the memory, a determination is made if the data is compressible. If so, the data line is compressed. ECC bits are generated for the compressed or uncompressed data line. A determination is made if an ECC cache line is associated with the received data line. If the data line is compressible, the ECC bits are appended to the compressed data line and the appended data line is stored in the data portion of the memory. Otherwise, the ECC bits are stored in the ECC cache and the data line is stored in the data portion of the memory.
Abstract:
Systems and methods are disclosed for error correction control (ECC) for a memory device comprising a data portion and an ECC portion, the memory device coupled to a system on a chip (SoC). The SoC includes an ECC cache. On receipt of a request to write a line of data to the memory, a determination is made if the data is compressible. If so, the data line is compressed. ECC bits are generated for the compressed or uncompressed data line. A determination is made if an ECC cache line is associated with the received data line. If the data line is compressible, the ECC bits are appended to the compressed data line and the appended data line is stored in the data portion of the memory. Otherwise, the ECC bits are stored in the ECC cache and the data line is stored in the data portion of the memory.
Abstract:
Systems and methods for improving the contrast of image frames are disclosed. In one embodiment, a system for improving the contrast of image frames includes a control module configured to create an intensity histogram for an image frame, define a set of markers on an intensity range of the histogram, assign a blend factor to each marker, calculate a blend factor for each original pixel of the image, obtain a first equalized pixel output value, calculate a final equalized pixel output value using the blend factor, the first equalized pixel output value, and an original pixel value, and output new pixel values that constitute the output image.
Abstract:
Systems, methods, and devices for enhancing an image are described herein. In some aspects, a device comprises a memory unit configured to store a left image and a right image. The left image and right image each depict a same scene from a different viewpoint. The device further comprises a coder configured to retrieve the left image and the right image from the memory unit. The coder is configured to determine a depth map based on a difference in spatial orientation between the left and right image. The device further comprises a processor coupled to the coder. The processor is configured to identify a portion of the left or right image selected by a user. The processor is further configured to determine an enhancement region surrounding the portion selected by the user based on the depth map. The processor is further configured to enhance the enhancement region.