Abstract:
Method for reducing call dropping rates in a multi-beam communication system that includes a user terminal, a gateway, and a plurality of beam sources projecting a plurality of beams, and where a link between the user terminal and the gateway is established on one or more beams. The method relies on a messaging protocol between the gateway and the user. Based on messages sent from the user to the gateway, preferably on a preselected periodic basis, the gateway determines the more desirable beam(s) for transmitting to the user. The messages sent from the user to the gateway contain values representing beam strengths as measured at the user. The gateway uses the user measured beam strengths to select the beams that should be used for the user. The beams to be used are the beams that will decrease the call dropping rates and provide a desired level of beam source diversity.
Abstract:
A method and appararatus for accurately determining the operating characteristics or impact of nonlinear effects on devices or communication systems transferring orthogonally coded spread-spectrum communication signals. A Walsh Power Ratio, is used to more accurately determine system response. This information can be used by power control loops in controlling or adjusting the operation of nonlinear elements or stages such as high power amplifiers in orthogonal CDMA communication systems to provide improved system response. The information can also be employed in assigning channels to systems users, and to proceed with physical changes to system hardware. The measurements used to formulate the WPR can be made to individual components or to entire systems by injecting communication signals in multiple channels containing data, and leaving at least one empty channel. The received power per channel on the output side of the system or device is then measured. A ratio of power density for the empty to the active channels is then formed. The determination of WPR for a system or components can be realized during periods of operation through periodic transfer of test signals either at allocated times or by interleaving among existing traffic signals in the system.
Abstract:
Method for reducing call dropping rates in a multi-beam communication system that includes a user terminal, a gateway, and a plurality of beam sources projecting a plurality of beams, and where a link between the user terminal and the gateway is established on one or more beams. The method relies on a messaging protocol between the gateway and the user. Based on messages sent from the user to the gateway, preferably on a preselected periodic basis, the gateway determines the more desirable beam(s) for transmitting to the user. The messages sent from the user to the gateway contain values representing beam strengths as measured at the user. The gateway uses the user measured beam strengths to select the beams that should be used for the user. The beams to be used are the beams that will decrease the call dropping rates and provide a desired level of beam source diversity.
Abstract:
A technique for spreading information signals in a spread spectrum communication system to provide increased signal acquisition speed. A first PN spreading code or code set is used to spread information signals along with a second PN spreading code sequence or function. The second PN code is synchronized with the first PN spreading code, but has a larger code period so that each code chip of the second PN code extends over the entire period of the first PN code. The longer period spreading code forms an outer code which helps provide unambiguous beam identification and easily acquired frame timing in the presence of dynamically changing signal path delay, improving signal acquisition.
Abstract:
In an antenna diverstiy environment, the timing offset of the receiver's fingers are based on the timing offset of the received peaks of the base station transmit signals. In a system with non-neglible multipath spacing, the timing offset of the received peaks of the base station transmit signals are not necessarily at the same location. In one embodiment, the demodulating elements for the signal from each base station antenna use the same offset for demodulating and determining an error signal based on pilot signal sampling prior to the timing offset and subsequent to the timing offset. The error signals are averaged and used by a time trackin loop to track the incoming signal. In another embodiment, the demodulating elements for the signal from each base station antenna independently time track the signals with different times offsets for each finger. The preferred embodiment depends on the method used by the base station to multiplex the data onto multiple transmit antennas.
Abstract:
In an antenna diverstiy environment, the timing offset of the receiver's fingers are based on the timing offset of the received peaks of the base station transmit signals. In a system with non-neglible multipath spacing, the timing offset of the received peaks of the base station transmit signals are not necessarily at the same location. In one embodiment, the demodulating elements for the signal from each base station antenna use the same offset for demodulating and determining an error signal based on pilot signal sampling prior to the timing offset and subsequent to the timing offset. The error signals are averaged and used by a time trackin loop to track the incoming signal. In another embodiment, the demodulating elements for the signal from each base station antenna independently time track the signals with different times offsets for each finger. The preferred embodiment depends on the method used by the base station to multiplex the data onto multiple transmit antennas.
Abstract:
In an antenna diverstiy environment, the timing offset of the receiver's fingers are based on the timing offset of the received peaks of the base station transmit signals. In a system with non-neglible multipath spacing, the timing offset of the received peaks of the base station transmit signals are not necessarily at the same location. In one embodiment, the demodulating elements for the signal from each base station antenna use the same offset for demodulating and determining an error signal based on pilot signal sampling prior to the timing offset and subsequent to the timing offset. The error signals are averaged and used by a time trackin loop to track the incoming signal. In another embodiment, the demodulating elements for the signal from each base station antenna independently time track the signals with different times offsets for each finger. The preferred embodiment depends on the method used by the base station to multiplex the data onto multiple transmit antennas.
Abstract:
A novel and improved method and apparatus for frequency tracking is described. Two main sources of error that contribute to the frequency difference between locally generated carriers and those used to modulate received signals include frequency offset between the two timing sources and doppler effects due to relative movement between the sources. The present invention provides a tracking mechanism for removing the effects of error due to frequency offset as well as compensation for frequency error due to doppler in a plurality of multipath signals. Each finger (700a..700n) of a RAKE receiver utilizing the present invention will compute a frequency error for that finger. The weighted average of all of these frequency errors is calculated (710) and filtered (720) to provide a control signal for varying the frequency of IF and RF frequency synthesizers, accounting for the common frequency offset seen at each finger. Additionally, each finger is equipped with a rotator (706a...706n) for providing frequency adjustment specific to that finger. The frequency of each finger is adjusted through feedback of the frequency error finger.
Abstract:
In applications employing phase-shift keying modulation, a phase rotator (200, 202) as disclosed herein is used to rotate the constellation of signal vectors before carrier modulation in order to maximize modulator output power. Such a rotator (200, 202) may be applied in the digital domain (to complex signals having either binary-valued or multi-valued components) or in the analog domain.