Abstract:
A method for transmitting data by a communication device is described. The method includes determining whether there are sufficient resources available to insert data into an aggregated packet. The method also includes inserting discardable data into the aggregated packet if there are not sufficient resources available to insert the data. The method further includes inserting the data into the aggregated packet if there are sufficient resources available to insert the data.
Abstract:
Method for reducing collisions between a first station and a second station in a CSMA/CA system. The method may be performed by the first station. Medium access to transmit to the second station may be obtained according to a first procedure for obtaining medium access. It may be determined that the second station is configured to grant transmit opportunity to the first station. Medium access to transmit to the second station may be obtained according to a second procedure for obtaining medium access based on determining that the second station is configured to grant transmit opportunity to the first station. The first procedure may include contending for medium access, while the second procedure may include delaying contention for medium access relative to the first procedure.
Abstract:
An electronic device includes a medium access controller (MAC) to generate frames and transmitter circuitry to convert the frames to radio-frequency (RF) analog signals for transmission. The MAC is to initiate frame generation at a time that precedes initiation of RF analog signal transmission by a specified time period. In a first mode, the MAC is to generate a dummy frame during a first portion of the specified time period and to initiate generation of a transmit frame during a subsequent second portion of the specified time period. Also in the first mode, the transmitter circuitry is to convert the dummy frame into a first analog signal, discard the first analog signal, convert the transmit frame into a second analog signal, and transmit the second analog signal.
Abstract:
System and method for improving channel efficiency in a wireless link between an access-point transceiver and a first transceiver. The first transceiver may have a first data throughput rate that is lower than the maximum possible data throughput rate of the wireless link. The first transceiver may include a first receive buffer. An indication of the first data throughput rate and a size of the first receive buffer may be received and stored by the access-point transceiver. A first size of a first data packet for transmission to the first transceiver may be determined by the access-point transceiver based on one or more of the first data throughput rate and/or the size of the first receive buffer. The first data packet of the first size may be transmitted to the first transceiver by the access-point transceiver at a data rate that is higher than the first data throughput rate.
Abstract:
System and method for improving channel efficiency in a wireless link between an access-point transceiver and a first transceiver. The first transceiver may have a first data throughput rate that is lower than the maximum possible data throughput rate of the wireless link. The first transceiver may include a first receive buffer. An indication of the first data throughput rate and a size of the first receive buffer may be received and stored by the access-point transceiver. A first size of a first data packet for transmission to the first transceiver may be determined by the access-point transceiver based on one or more of the first data throughput rate and/or the size of the first receive buffer. The first data packet of the first size may be transmitted to the first transceiver by the access-point transceiver at a data rate that is higher than the first data throughput rate.
Abstract:
A wireless communication device having a root complex, a WLAN module, a power module and an interface linking the root complex and the WLAN module, wherein the root complex is configured to implement a power management policy based upon a latency tolerance value for the WLAN module and wherein the power module is configured to adjust the latency tolerance value based upon receive and transmit parameters of the WLAN module. The power module may be configured to adjust the latency tolerance value on a per-frame basis.
Abstract:
A wireless communication device having a root complex, a WLAN module, a power module and an interface linking the root complex and the WLAN module, wherein the root complex is configured to implement a power management policy based upon a latency tolerance value for the WLAN module and wherein the power module is configured to adjust the latency tolerance value based upon receive and transmit parameters of the WLAN module. The power module may be configured to adjust the latency tolerance value on a per-frame basis.
Abstract:
Method of performing dual-mode rate control for an access point in a wireless communication system includes a single-user mode of operation and multi-user mode of operation. In the single-user mode, a basic rate for a station is determined based on channel conditions. In the multi-user mode, a rate for a plurality of stations is determined using tracking. The tracking includes performing a sounding for the plurality of stations. An initial multi-user current rate is then set equal to a function of a number of users and the basic rate. A transmission is sent to the plurality of stations using the current rate. A packet error rate (PER) is detected during transmission to the plurality of stations. The current rate is adjusted based on the PER. After rate adjustment, either sounding is triggered or the method returns to sending a transmission using the current rate.
Abstract:
An electronic device includes a medium access controller (MAC) to generate frames and transmitter circuitry to convert the frames to radio-frequency (RF) analog signals for transmission. The MAC is to initiate frame generation at a time that precedes initiation of RF analog signal transmission by a specified time period. In a first mode, the MAC is to generate a dummy frame during a first portion of the specified time period and to initiate generation of a transmit frame during a subsequent second portion of the specified time period. Also in the first mode, the transmitter circuitry is to convert the dummy frame into a first analog signal, discard the first analog signal, convert the transmit frame into a second analog signal, and transmit the second analog signal.
Abstract:
A wireless communication device having a root complex, a WLAN module, a power module and an interface linking the root complex and the WLAN module, wherein the root complex is configured to implement a power management policy based upon a latency tolerance value for the WLAN module and wherein the power module is configured to adjust the latency tolerance value based upon receive and transmit parameters of the WLAN module. The power module may be configured to adjust the latency tolerance value on a per-frame basis.