Abstract:
Embodiments include computing devices, systems, and methods for protecting data using virtual views of resource contents. A virtualization interface monitor may monitor a request to access a computing device resource by a first requesting entity and determine whether the first requesting entity is an owner of the computing device resource. A data protection system may provide, to the first requesting entity, an unobscured virtual view of resource contents of the computing device resource in response to determining that the first requesting entity is the owner of the computing device resource. A resource content cryptographic device may obscure a virtual view of the resource contents of the computing device resource in response to determining that the first requesting entity is a non-owner of the computing device resource. The data protection system may provide, to the first requesting entity, the obscured virtual view of resource contents of the computing device resource.
Abstract:
Systems, methods, and devices of the various aspects enable identification of anomalous application behavior by monitoring memory accesses by an application running on a computing device. In various aspects, a level of memory access monitoring may be based on a risk level of an application running on the computing device. The risk level may be determined based on memory address accesses of the application monitored by an address monitoring unit of one or more selected memory hierarchy layers of the computing device. The memory hierarchy layers selected for monitoring for memory address accesses of the application may be based on the determined risk level of the application. Selected memory hierarchy layers may be monitored by enabling one or more address monitoring units (AMUs) associated with the selected one or more memory hierarchy layers. The enabling of selected AMUs may be accomplished by an AMU selection module.
Abstract:
Methods, devices and systems for detecting suspicious or performance-degrading mobile device behaviors intelligently, dynamically, and/or adaptively determine computing device behaviors that are to be observed, the number of behaviors that are to be observed, and the level of detail or granularity at which the mobile device behaviors are to be observed. The various aspects efficiently identify suspicious or performance-degrading mobile device behaviors without requiring an excessive amount of processing, memory, or energy resources.
Abstract:
Various embodiments include methods of protecting a computing device within a network from malware or other non-benign behaviors. A computing device may monitor inputs and outputs to a server, derive a functional specification from the monitored inputs and outputs, and use the functional specification for anomaly detection. Use of the derived functional specification for anomaly detection may include determining whether a behavior, activity, web application, process or software application program is non-benign. The computing device may be the server, and the functional specification may be used to determine whether the server is under attack. In some embodiments, the computing device may constrain the functional specification with a generic constraint, detect a new input-output pair, determine whether the detected input-output pair satisfies the constrained functional specification, and determine that the detected input-output pair is anomalous upon determining that the detected input-output pair (or request-response pair) satisfies the constrained functional specification.
Abstract:
Various embodiments include a honeypot system configured to trigger malicious activities by malicious applications using a behavioral analysis algorithm and dynamic resource provisioning. A method performed by a processor of a computing device, which may be a mobile computing device, may include determining whether or not a target application currently executing on the computing device is potentially malicious based, at least in part, on the analysis, predicting a triggering condition of the target application in response to determining the target application is potentially malicious, provisioning one or more resources based, at least in part, on the predicted triggering condition, monitoring activities of the target application corresponding to the provisioned one or more resources, and determining whether or not the target application is a malicious application based, at least in part, on the monitored activities. The resources may be device components (e.g., network interface(s), sensor(s), etc.) and/or data (e.g., files, etc.).
Abstract:
Systems, methods, and devices of the various aspects enable detecting a malfunction caused by radio frequency (RF) interference. A computing device processor may identify a location of the computing device based on a plurality of real-time data inputs received by the computing device. The processor may characterize an RF environment of the computing device based on the identified location and the plurality of real-time data inputs. The processor may determine at least one RF emissions threshold based on the characterization of the RF environment. The processor may compare the characterization of the RF environment to the at least one RF emissions threshold, and may perform an action in response to determining that the characterization of the RF environment exceeds the at least one RF emissions threshold.
Abstract:
Various embodiments provide methods, devices, and non-transitory processor-readable storage media for detecting anomalies in network traffic patterns with a network device by analyzing patterns in network traffic packets traversing the network. Various embodiments include clustering received network traffic packets into groups. The network device receives data packets originating from an endpoint device and analyzes the packets for patterns. The network device may apply a traffic analysis model to the clusters to obtain context classes. The network device may select a behavior classifier model based, at least in part, on the determined context class, and may apply the selected behavior classifier model to determine whether the packet behavior is benign or non-benign.
Abstract:
Aspects may relate to a server comprising: an interface to receive a service request; and a processor coupled to the interface to receive the service request, the processor configured to: implement a firewall appliance for the service request; operate a first micro-security application to generate an anomaly alert for the service request; and operate a second micro-security application to receive the anomaly alert from the first micro-security application or from another server's micro-security application and to determine whether the service request corresponds to a non-benign behavior.
Abstract:
An aspect computing device may be configured to perform program analysis operation in response to classifying a behavior as non-benign. The program analysis operation may identify new sequences of API calls or activity patterns that are associated with the identified non-benign behaviors. The computing device may learn new behavior features based on the program analysis operation or update existing behavior features based on the program analysis operation. For example, API sequences observed to occur when a non-benign behavior is recognized may be added to behavior features observed during program analysis operation.
Abstract:
Systems, methods, and devices of the various aspects enable detecting anomalous electromagnetic (EM) emissions from among a plurality of electronic devices. A device processor may receive EM emissions of a plurality of electronic devices, wherein the receiving device has no previous information about any of the plurality of electronic devices. The device processor may cross-correlate the EM emissions of the plurality of electronic devices over time. The device processor may identify a difference of the cross-correlated EM emissions from earlier cross-correlated EM emissions. The device processor may determine that the difference of the cross-correlated EM emissions from the earlier cross-correlated EM emissions indicates an anomaly in one or more of the plurality of electronic devices.