Abstract:
Certain aspects of the present disclosure relate to methods and apparatuses for handling malicious attacks. In one aspect, the methods and apparatuses are configured to identify packets received from a malicious source based at least in part on packets received by a wireless device that change a state of the wireless device from a dormant state to a connected state, selectively disconnect the wireless device from a packet data network (PDN) by releasing a first Internet Protocol (IP) address used to connect the wireless device to the PDN when a number of packets identified as received from the malicious source reaches a threshold number within a monitoring period, and reconnect the wireless device to the PDN using a second IP address that is different from the first IP address. In another aspect, a connection to an IP Multimedia Subsystem (IMS) PDN is maintained after the PDN is disconnected.
Abstract:
The application relates to a wireless relay device which acts as a mobile hotspot, in particular to enable non-4G-LTE-capable IMS clients to establish IMS connections to the 4G-LTE network. Such a device is also referred to as MiFi router, SoftAP or software hotspot. In order to ensure QoS for all IMS clients on the LTE network, there may be one or more policies in place limiting the number of concurrent connections between IMS clients and the network via a particular relay device. Such policies might operate on a first-come-first- serve basis. However, in certain situation, such policies might be unsatisfactory because different connections might be associated with different priorities. Therefore the application proposes to determine the priority associated with the device seeking connection establishment (522) and handle the connection accordingly, i.e. either to terminate a connection of lower priority (523) or to reject the connection if the priority is lower than the priorities of the other connections (526).
Abstract:
Certain aspects of the present disclosure relate to methods and apparatuses for handling malicious attacks. In one aspect, the methods and apparatuses are configured to identify packets received from a malicious source based at least in part on packets received by a wireless device that change a state of the wireless device from a dormant state to a connected state, selectively disconnect the wireless device from a packet data network (PDN) by releasing a first Internet Protocol (IP) address used to connect the wireless device to the PDN when a number of packets identified as received from the malicious source reaches a threshold number within a monitoring period, and reconnect the wireless device to the PDN using a second IP address that is different from the first IP address. In another aspect, a connection to an IP Multimedia Subsystem (IMS) PDN is maintained after the PDN is disconnected.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatuses for handling malicious attacks. In one aspect, the methods and apparatuses are configured to identify packets received from a malicious source based at least in part on packets received by a wireless device that change a state of the wireless device from a dormant state to a connected state, selectively disconnect the wireless device from a packet data network (PDN) by releasing a first Internet Protocol (IP) address used to connect the wireless device to the PDN when a number of packets identified as received from the malicious source reaches a threshold number within a monitoring period, and reconnect the wireless device to the PDN using a second IP address that is different from the first IP address. In another aspect, a connection to an IP Multimedia Subsystem (IMS) PDN is maintained after the PDN is disconnected.