Abstract:
System and method for transmitting data to a remote communication device to achieve desirable transmit data block size and data rate based on measurements of the communication link quality to the remote device. The method entails selecting an initial transmit data rate and power based on an initial measurement of the link quality, and a default size for the transmit data block. The data block is then transmitted to the remote, and an acknowledgement (ACK) message is received from the remote. If the ACK message indicates that the data block was properly received, the size for the next data block to be transmitted is increased. Otherwise, the size for the next data block may be decreased or remain the same. Additionally, the transmit data rate may be increased if the remote properly receives a defined number of consecutive data blocks, or decreased if the remote does not receive a defined number of consecutive data blocks.
Abstract:
Systems and methods for initiating a connection between a host and a device in a personal area network are described herein. In one embodiment, the method comprises broadcasting a request for services comprising information indicative of a type of device or service. The method further comprises receiving responses from a first device and a second device, each configured to service the request. The method further comprises connecting to the first device.
Abstract:
Apparatuses and methods for avoiding interference between wireless systems are described herein. One embodiment of the disclosure provides an apparatus for avoiding interference between at least one transmitter and at least one receiver within at least one wireless device. The apparatus comprises a first processing circuit configured to determine whether one or more bins are affected by interference from a transmitter based on predetermined information. The apparatus further comprises a second processing circuit configured to mitigate the interference from the transmitter by at least one of the transmitter and a receiver if it is determined that the one or more bins are affected.
Abstract:
Apparatuses and methods for avoiding interference between wireless systems are described herein. One embodiment of the disclosure provides an apparatus for avoiding interference between at least one transmitter and at least one receiver within at least one wireless device. The apparatus comprises a first processing circuit configured to determine whether one or more bins are affected by interference from a transmitter based on predetermined information. The apparatus further comprises a second processing circuit configured to mitigate the interference from the transmitter by at least one of the transmitter and a receiver if it is determined that the one or more bins are affected
Abstract:
Exemplary embodiments are related to a dual-mode controller. A device may include a controller configured to convey a signal to a low-noise block (LNB) via a transmission line and circuitry configured to sense at least one parameter of the transmission line. The device may further include logic coupled to the circuitry and configured to determine whether the transmission line is available for transmission based on the at least one sensed parameter.
Abstract:
Mechanisms for optimizing the selection of a new legal channel during regulatory domain changes and improving the user experience during changes in the underlying physical link having wide applicability to many wireless communications links are disclosed. Applications comprise cellular networks, WLANs, WPANs. Wireless USB, high speed channels for Bluetooth and other uses of WiMedia as well as a wide range of radio technologies that use a number of time and/or frequency-domain separation techniques to create multiple channels in a given portion of the RF spectrum where there is no global agreement on the use of the RF spectrum. Differences could pertain to permitted frequency ranges, permitted power levels, requirements to detect and/or avoid other radio technologies, indoor/outdoor use requirements, and many others. The disclosed embodiments provide a method for taking advantage of, or at least minimizing the impact of, a change in the channel link which impacts the channel characteristics such as the available bandwidth.
Abstract:
Mechanisms for optimizing the selection of a new legal channel during regulatory domain changes and improving the user experience during changes in the underlying physical link having wide applicability to many wireless communications links are disclosed. Applications comprise cellular networks, WLANs, WPANs. Wireless USB, high speed channels for Bluetooth and other uses of WiMedia as well as a wide range of radio technologies that use a number of time and/or frequency-domain separation techniques to create multiple channels in a given portion of the RF spectrum where there is no global agreement on the use of the RF spectrum. Differences could pertain to permitted frequency ranges, permitted power levels, requirements to detect and/or avoid other radio technologies, indoor/outdoor use requirements, and many others. The disclosed embodiments provide a method for taking advantage of, or at least minimizing the impact of, a change in the channel link which impacts the channel characteristics such as the available bandwidth.
Abstract:
Apparatuses and methods for avoiding interference between wireless systems are described herein. One embodiment of the disclosure provides an apparatus for avoiding interference between at least one transmitter and at least one receiver within at least one wireless device. The apparatus comprises a first processing circuit configured to determine whether one or more bins are affected by interference from a transmitter based on predetermined information. The apparatus further comprises a second processing circuit configured to mitigate the interference from the transmitter by at least one of the transmitter and a receiver if it is determined that the one or more bins are affected
Abstract:
System and method for transmitting data to a remote communication device to achieve desirable transmit data block size and data rate based on measurements of the communication link quality to the remote device. The method entails selecting an initial transmit data rate and power based on an initial measurement of the link quality, and a default size for the transmit data block. The data block is then transmitted to the remote, and an acknowledgement (ACK) message is received from the remote. If the ACK message indicates that the data block was properly received, the size for the next data block to be transmitted is increased. Otherwise, the size for the next data block may be decreased or remain the same. Additionally, the transmit data rate may be increased if the remote properly receives a defined number of consecutive data blocks, or decreased if the remote does not receive a defined number of consecutive data blocks.
Abstract:
System and method for transmitting data to a remote communication device to achieve desirable transmit data block size and data rate based on measurements of the communication link quality to the remote device. The method entails selecting an initial transmit data rate and power based on an initial measurement of the link quality, and a default size for the transmit data block. The data block is then transmitted to the remote, and an acknowledgement (ACK) message is received from the remote. If the ACK message indicates that the data block was properly received, the size for the next data block to be transmitted is increased. Otherwise, the size for the next data block may be decreased or remain the same. Additionally, the transmit data rate may be increased if the remote properly receives a defined number of consecutive data blocks, or decreased if the remote does not receive a defined number of consecutive data blocks.