Abstract:
Techniques described here use variations in the sensor to generate an identifier for the sensor. Each sensor may be comprised of sub-sensing units, called pixels that may demonstrate variation in their sensing capability from one pixel to another. Embodiments of the invention, describe a method for using the relative variance of each pixel (relative to the whole sensor or/and a portion of the sensor) in generating an identifier for the sensor. In one embodiment, the method may obtain information associated with a plurality of pixels from a sensor, detect variations in the information associated for each of the pixels from a subset of the plurality of pixels and generate an identifier for the sensor using the detected variations in the information associated with each of the pixels from the subset of plurality of pixels.
Abstract:
A fingerprint sensing apparatus may include a fingerprint sensor system and a control system. The fingerprint sensor system may include an ultrasonic sensor array. The control system may be capable of receiving fingerprint sensor data from the fingerprint sensor system (601) and of determining whether an object is positioned proximate a portion of the fingerprint sensor system (603). The control system may be capable of determining an acoustic impedance of at least a portion of an object that is positioned proximate the fingerprint sensor system (605). The control system may be capable of determining whether the acoustic impedance is within an acoustic impedance range corresponding to that of skin (607) and of determining, based at least in part on the acoustic impedance, whether the object is a finger (609).
Abstract:
A fingerprint sensing apparatus may include a fingerprint sensor system and a control system capable of receiving fingerprint sensor data from the fingerprint sensor system (401). The control system may be capable of determining fingerprint sensor data blocks for at least a portion of the fingerprint sensor data (403) and of calculating statistical variance values for fingerprint sensor data corresponding to each of the fingerprint sensor data blocks (405). The control system may be capable of determining, based at least in part the statistical variance values, whether an object is positioned proximate a portion of the fingerprint sensor system (407).
Abstract:
An optical stylus may be capable of providing active illumination for a touch/proximity sensing apparatus. The optical stylus also may be capable of determining a tilt angle of the optical stylus and/or an amount of pressure exerted upon the optical stylus. In some examples, an optical stylus may determine a tilt angle and/or pressure according to changes in optical flux distributions inside the optical stylus. In some examples, an optical stylus may include a deformable tip. The deformable tip and/or associated features may be capable of altering optical flux distributions inside the optical stylus in response to applied pressure and/or optical stylus tilt. In some implementations, the optical flux provided to the light guide by the optical stylus may vary according to pressure applied to the optical stylus.
Abstract:
A multifunctional pixel is disclosed. The multifunctional pixel may include a display pixel, a photoelectric sensor, and a second sensor. The second sensor may include one of the following: an ultrasonic sensor and an infrared sensor. The display pixel, the photoelectric sensor, and the second sensor may be located in the multifunctional pixel.
Abstract:
A piezoelectric micromechanical ultrasonic transducer (PMUT) includes a diaphragm disposed over a cavity, the diaphragm including a piezoelectric layer stack including a piezoelectric layer, a first electrode electrically coupled with transceiver circuitry, and a second electrode electrically coupled with the transceiver circuitry. The first electrode may be disposed in a first portion of the diaphragm, and the second electrode may be disposed in a second, separate, portion of the diaphragm. Each of the first and the second electrode is disposed on or proximate to a first surface of the piezoelectric layer, the first surface being opposite from the cavity. The PMUT is configured to transmit first ultrasonic signals by way of the first electrode during a first time period and to receive second ultrasonic signals by way of the second electrode during a second time period, the first time period and the second time period being at least partially overlapping.
Abstract:
A fingerprint sensing apparatus may include a fingerprint sensor system and a control system capable of receiving fingerprint sensor data from the fingerprint sensor system. The control system may be capable of determining fingerprint sensor data blocks for at least a portion of the fingerprint sensor data and of calculating statistical variance values for fingerprint sensor data corresponding to each of the fingerprint sensor data blocks. The control system may be capable of determining, based at least in part the statistical variance values, whether an object is positioned proximate a portion of the fingerprint sensor system.
Abstract:
A mobile device may include a plurality of sensors and a processor. The processor may be configured to determine trust data for an asset based upon inputs from the plurality of sensors, determine whether an asset is accessible or not accessible based upon evaluating the trust data with a trust determination algorithm, and continuously update the trust data to continue to allow access to the asset or revoke access to the asset based upon the inputs from the plurality of sensors.