Abstract:
Embodiments describe a system and/or method for multiple party digital signatures. According to a first aspect a method comprises establishing a first validity range for a first key, establishing a first validity range for at least a second key, and determining if the validity range of the first key overlaps the first validity range of the at least a second key. A certificate is signed with the first validity range of the first key and the first validity range of the at least a second key if the validity ranges overlap. According to another embodiment, signage of the certificate is refused if the first validity range of the first key does not overlap with the first validity range of the at least a second key.
Abstract:
Described are techniques and mechanisms for enforcing trust between an application and a library loaded by the application. Very generally stated, the application declares one or more trusted code groups ('TCGs') of which a library must be a member to be authorized for execution with the application. Libraries that are authorized to assert membership in one or more TCGs include a secure indicator of that membership. As the application executes and at-tempts to load a library, that libraries membership in a TCG authorized by the application is verified prior to loading the library.
Abstract:
Methods, systems and devices enable synchronizing obscured identification information between a wireless identity transmitter and a central server to support one-way communication of the obscured identification information to the central server. The wireless identity transmitter may be a compact device configured to broadcast messages, such as through Bluetooth® advertisements, including an obscured identifier for receipt and relay to the central server by proximate proximity broadcast receivers via sighting messages that may also include location information. The central server may decode received identification codes to identify the wireless identity transmitter. The wireless identity transmitter may create message data by concatenating identifying information with an incrementing nonce, encrypting the concatenated information, and truncating the encrypted information. Alternatively, concatenated identification information may be encrypted with a pseudo-random function and a secret key known by the central server. The central server that may compare received data to pre-calculated encrypted data.
Abstract:
Embodiments describe a system and/or method for multiple party digital signatures. According to a first aspect a method comprises establishing a first validity range for a first key, establishing a first validity range for at least a second key, and determining if the validity range of the first key overlaps the first validity range of the at least a second key. A certificate is signed with the first validity range of the first key and the first validity range of the at least a second key if the validity ranges overlap. According to another embodiment, signage of the certificate is refused if the first validity range of the first key does not overlap with the first validity range of the at least a second key.
Abstract:
Methods, systems and devices enable synchronizing obscured identification information between a wireless identity transmitter (110) and a central server (120) to support one-way communication of the obscured identification information to the central server. The wireless identity transmitter (110) may be a compact device configured to broadcast messages, such as through Bluetooth ® advertisements, including an obscured identifier for receipt and relay to the central server (120) by proximate proximity broadcast receivers (138, 142) via sighting messages that may also include location information. The central server (120) may decode received identification codes to identify the wireless identity transmitter. The wireless identity transmitter may create message data by concatenating identifying information with an incrementing nonce, encrypting the concatenated information, and truncating the encrypted information. Alternatively, concatenated identification information may be encrypted with a pseudo-random function and a secret key known by the central server. The central server that may compare received data to pre-calculated encrypted data.
Abstract:
Methods, apparatus, systems, and computer program products are provided for wirelessly synchronizing datasets that are stored on a wireless device and at a network device, such as a network server or database. Present aspects provide for a simplified and efficient synchronization process, whereby synchronization can be completed in a single round-trip of wireless communication between the wireless device and the network device. Single round-trip synchronization provides for less use of network resources, shorter overall synchronization cycle times and lessens the likelihood of wireless network failures, such as call drops or the like, causing the synchronization process to fail. Additionally, simplification and efficiency are further realized by creating a synchronization process that allows the network dataset to be independent of the wireless device datasets, i.e., the network server does not require a full change history nor is the network server required to know the wireless device dataset version.
Abstract:
Described are techniques and mechanisms for enforcing trust between an application and a library loaded by the application. Very generally stated, the application declares one or more trusted code groups ("TCGs") of which a library must be a member to be authorized for execution with the application. Libraries that are authorized to assert membership in one or more TCGs include a secure indicator of that membership. As the application executes and at-tempts to load a library, that libraries membership in a TCG authorized by the application is verified prior to loading the library.
Abstract:
Methods, apparatus, systems, and computer program products are provided for wirelessly synchronizing datasets that are stored on a wireless device and at a network device, such as a network server or database. Present aspects provide for a simplified and efficient synchronization process, whereby synchronization can be completed in a single round-trip of wireless communication between the wireless device and the network device. Single round-trip synchronization provides for less use of network resources, shorter overall synchronization cycle times and lessens the likelihood of wireless network failures, such as call drops or the like, causing the synchronization process to fail. Additionally, simplification and efficiency are further realized by creating a synchronization process that allows the network dataset to be independent of the wireless device datasets, i.e., the network server does not require a full change history nor is the network server required to know the wireless device dataset version.