Abstract:
A method of saving power in a wireless network can include determining a plurality of stations associated with an AP. The AP can create station groups using group selection logic. Notably, the group selection logic is transparent to the plurality of stations. A plurality of TIMs can then be sent, each TIM allowing only one station group access to a channel during a predetermined time interval, such as a beacon interval. In another method, a station can determine its sleep duration based on at least one of first information from the TIM to generate random sleep duration, second information regarding previous operation of the station, and third information regarding a status of the station. The first, second, and third information can include the number of stations associated with the AP and having buffered data based on the TIM, historical collisions, and power status.
Abstract:
Methods, systems, and devices are described for adapting blind reception duration for range and congestion. A wireless station may measure channel conditions (e.g., range to an access point (AP) and channel congestion), and adjust one or more sleep timers based on the conditions. The sleep timers may each be associated with a window for reception of an expected transmission. If the transmission is not received in the window, the station may enter a sleep state to conserve power. In one example, a beacon miss timer is adjusted, and the expected wireless transmission is a delivery traffic indication message (DTIM). In another example, a content after beacon (CAB) timer is adjusted and the expected wireless transmission is the CAB. In some cases, the station may measure a delay for a number of beacons and determine the adjustment based on the delays.
Abstract:
Methods, systems, and devices are described for power conservation in a wireless communications system through efficient transmissions and acknowledgements of information between an AP and a station. The time between a determination by a station to enter a power saving mode and entering network sleep mode by the station may be reduced through a transmission, by an AP, of an MPDU to the station successive to an SIFS after transmission of an acknowledgement to the station of a PS-Poll frame from the station. The time to enter a power saving mode by a station may also be reduced through transmission of A-MPDUs in which a last MPDU of the A-MPDU has an indicator bit cleared to indicate no additional data is to be transmitted. An AP may prevent a retransmission of an MPDU to the station in the absence of an acknowledgement from the station, to further enhance efficiency.
Abstract:
Systems and methods are provided for enhancing the concurrency of a wireless device operating in multiple network contexts. By identifying opportunity instants that may exist within the normal exchange of information by a device having a single physical transceiver in a first network context, tasks for a second network context may be performed using the transceiver with minimal impact on performance related to the first network context and preferably in complete transparence to the first network context.
Abstract:
A method of saving power in a wireless network can include determining a plurality of stations associated with an AP. The AP can create station groups using group selection logic. Notably, the group selection logic is transparent to the plurality of stations. A plurality of TIMs can then be sent, each TIM allowing only one station group access to a channel during a predetermined time interval, such as a beacon interval. In another method, a station can determine its sleep duration based on at least one of first information from the TIM to generate random sleep duration, second information regarding previous operation of the station, and third information regarding a status of the station. The first, second, and third information can include the number of stations associated with the AP and having buffered data based on the TIM, historical collisions, and power status.
Abstract:
Methods, systems, and devices are described for establishing a virtual communication link including at least a first and second physical link between two devices. A single virtual packet queue of a device may receive one or more data packets to be transmitted via the virtual communication link. The single virtual packet queue may attach a virtual sequence number to each of the one or more data packets and send the one or more data packets to one or more of the first or the second physical link according to the assigned virtual sequence numbers. The one or more packets may then be communicated via the first and/or second physical links according to link specific sequence numbers, such as medium access control (MAC) sequence numbers, assigned to the one or more data packets by the first and/or second physical links.
Abstract:
Power saving for wireless communication devices by adjusting the amount of time, after a last transmission/reception of data, that the device remains in an awake mode listening for more data before the device enters a sleep mode. This time period may be referred to as inactivity time interval or inactivity timeout (ITO). The described features may be employed to improve power savings by taking metrics of channel congestion into account for determining the ITO. The appropriate ITO may be determined to be commensurate with ongoing transmission and/or reception activity. Because error may occur in estimating channel congestion and/or transmission/reception activity, latency bounds based on estimation errors may be managed by classifying the operational mode into multiple regions and employing techniques for mitigating error in congestion estimation based at least in part on the operational mode.
Abstract:
Methods, systems, and devices are described for power conservation in a wireless communications system through efficient transmissions and acknowledgements of information between an AP and a station. The time between a determination by a station to enter a power saving mode and entering network sleep mode by the station may be reduced through a transmission, by an AP, of an MPDU to the station successive to an SIFS after transmission of an acknowledgement to the station of a PS-Poll frame from the station. The time to enter a power saving mode by a station may also be reduced through transmission of A-MPDUs in which a last MPDU of the A-MPDU has an indicator bit cleared to indicate no additional data is to be transmitted. An AP may prevent a retransmission of an MPDU to the station in the absence of an acknowledgement from the station, to further enhance efficiency.
Abstract:
Methods and apparatuses are described in which dynamic voltage and frequency scaling may be used to save power when processing packets in a wireless communications device. In some cases, inframe detection may allow the device to determine whether to transition from a first (e.g., lower) voltage level to a second (e.g., higher) voltage level to process one or more packets of a received frame. For some packet types the first voltage level may be maintained. In other cases, the device may determine a bandwidth to use from among multiple bandwidths supported by the device. The bandwidth may be determined based on channel conditions. A voltage level may be identified that corresponds to the determined bandwidth and a processing voltage may be scaled to the identified voltage level. The device may be configured to operate in wireless local area network (WLAN) and/or in a cellular network (e.g., LTE).
Abstract:
Power saving for wireless communication devices by adjusting the amount of time, after a last transmission/reception of data, that the device remains in an awake mode listening for more data before the device enters a sleep mode. This time period may be referred to as inactivity time interval or inactivity timeout (ITO). The described features may be employed to improve power savings by taking metrics of channel congestion into account for determining the ITO. The appropriate ITO may be determined to be commensurate with ongoing transmission and/or reception activity. Because error may occur in estimating channel congestion and/or transmission/reception activity, latency bounds based on estimation errors may be managed by classifying the operational mode into multiple regions and employing techniques for mitigating error in congestion estimation based at least in part on the operational mode.