Abstract:
Systems and methods for alignment and calibration of a wireless power transmitter and a wireless power receiver are disclosed. According to one aspect, a wireless power transmit coil is first aligned with a wireless power receive coil. An alignment signal is received indicated that the transmit coil and the receive coil are aligned is received by the wireless power transmitter. A signal indicative of a characteristic of an electrical signal received by the wireless power receiver is generated and communicated to the wireless power transmitter. A calibration feedback signal is generated to adjust a driving signal of the wireless power transmitter based on the received signal.
Abstract:
This disclosure provides methods for foreign object detection and transmit power regulation in wireless power transmission systems. The method includes exciting a first part of a wireless power transmission system, via a wireless power transmitter. The method further includes detecting, in the presence of a non-charging object, a first change in a first parameter. The first parameter is indicative of a coupling between the non-charging object and the first part. The method further includes varying a characteristic of the wireless power transmission based on said first change.
Abstract:
In one aspect, a wireless charger may include a wireless power antenna, a wireless power transmitter coupled to the wireless power antenna and configured to generate a wireless charging field in a charging region, a first communication antenna, a first transceiver coupled to the communication antenna and configured to communicate with the chargeable device via the communication antenna, a first signal strength detector configured to determine a signal strength of a first signal received by the transceiver, and a controller configured to determine whether the chargeable device is within the charging region based at least in part on the signal strength of the first signal.
Abstract:
This disclosure provides systems, methods, and apparatus for the limiting of voltage in wireless power receivers. In one aspect, an apparatus includes a power transfer component configured to receive power wirelessly from a transmitter. The apparatus further includes a circuit coupled to the power transfer component and configured to reduce a received voltage when activated. The apparatus further includes a controller configured to activate the circuit when the received voltage reaches a first threshold value and configured to deactivate the circuit when the received voltage reaches a second threshold value. The apparatus further includes an antenna configured to generate a signal to the transmitter that signals to the transmitter that the received voltage reached the first threshold value.
Abstract:
A system and method for charging a chargeable device is provided. The system can include a wireless charger including a wireless power antenna and a wireless power transmitter coupled to the wireless power antenna and configured to generate a wireless charging field in at least one charging region. The wireless charging field includes a plurality of power signals. The wireless charger further includes a communication antenna and a transceiver coupled to the communication antenna and configured to communicate with the chargeable device via the communication antenna. The wireless charger further includes a controller configured to facilitate avoidance of cross connection of the chargeable device with the wireless charger and at least one other wireless charger in which the chargeable device receives power from the wireless power transmitter of the wireless charger while communicating with at least one other wireless charger. The system can include a chargeable device including a controller configured to generate a load pulse configured to be received by the wireless charger.
Abstract:
Aspects of a protection circuit and method are disclosed. A transmit circuit generates a power transmit signal for powering the transmit antenna to generate a wireless field sufficient for wirelessly charging a device. A detection circuit senses a strength of an electromagnetic field received by the transmit antenna and further configured to generate an sense signal indicating the strength of the electromagnetic field received by the transmit antenna. A power control circuit controls a switch based at least partly on the sense signal. The power control circuit can attenuate an electrical coupling between the transmit antenna and the transmit circuit such that the received electromagnetic field is inhibited from damaging the transmit antenna or the transmit circuit.
Abstract:
This disclosure provides systems, methods and apparatus for tuning a transmit coil for operation in a plurality of frequency bands. In one aspect, a method of wireless power transmission is provided. The method includes exciting a first part of a wireless power transmission system, via a wireless power transmitter. The method further includes detecting, in the presence of a non-charging object, a first change in a first parameter. The first parameter is indicative of a coupling between the non-charging object and the first part. The method further includes varying a characteristic of the wireless power transmission based on said first change.
Abstract:
In one aspect, a wireless charger may include a wireless power antenna, a wireless power transmitter coupled to the wireless power antenna and configured to generate a wireless charging field in a charging region, a first communication antenna, a first transceiver coupled to the communication antenna and configured to communicate with the chargeable device via the communication antenna, a first signal strength detector configured to determine a signal strength of a first signal received by the transceiver, and a controller configured to determine whether the chargeable device is within the charging region based at least in part on the signal strength of the first signal.
Abstract:
Aspects of a protection circuit and method are disclosed. A transmit circuit generates a power transmit signal for powering the transmit antenna to generate a wireless field sufficient for wirelessly charging a device. A detection circuit senses a strength of an electromagnetic field received by the transmit antenna and further configured to generate an sense signal indicating the strength of the electromagnetic field received by the transmit antenna. A power control circuit controls a switch based at least partly on the sense signal. The power control circuit can attenuate an electrical coupling between the transmit antenna and the transmit circuit such that the received electromagnetic field is inhibited from damaging the transmit antenna or the transmit circuit.