Abstract:
An image sensor including a planar sensor array, a lens configured to form an optical image on the planar sensor array and characterized by a locus of focal points on a curved surface, and a cover glass with multiple thickness levels or multiple cover glasses of different sizes. The one or more cover glasses are configured to shift the locus of focal points for large field angles, such that there are multiple intersections between the planar sensor array and the locus of focal points for a large FOV, and thus multiple zones with best focus on the planar sensor array.
Abstract:
Disclosed herein are techniques for dynamically forming an optical component that automatically aligns with and changes positions with a scanning light beam to modify the wave front of the scanning light beam, such as collimating the scanning light beam. More specifically, a patterning beam that aligns with the scanning light beam may be scanned together with the scanning light beam to form the self-aligning and travelling optical component in an electro-optic material layer that is connected in serial with a photoconductive material layer to a voltage source, where the patterning beam optically modulates the impedance of the photoconductive material layer and therefore an electric field within the electro-optic material layer, the modulated electric field causing localized changes of refractive index in the electro-optic material layer to form the self-aligning and travelling optical component.
Abstract:
Disclosed herein are techniques for dynamically forming an optical component that automatically aligns with and changes positions with a scanning light beam to modify the wave front of the scanning light beam, such as collimating the scanning light beam. More specifically, a patterning beam that aligns with the scanning light beam may be scanned together with the scanning light beam to form the self-aligning and travelling optical component in an electro-optic material layer that is connected in serial with a photoconductive material layer to a voltage source, where the patterning beam optically modulates the impedance of the photoconductive material layer and therefore an electric field within the electro-optic material layer, the modulated electric field causing localized changes of refractive index in the electro-optic material layer to form the self-aligning and travelling optical component.
Abstract:
Disclosed herein are techniques for dynamically forming an optical component that automatically aligns with and changes positions with a scanning light beam to modify the wave front of the scanning light beam, such as collimating the scanning light beam. More specifically, a patterning beam that aligns with the scanning light beam may be scanned together with the scanning light beam to form the self-aligning and travelling optical component in an electro-optic material layer that is connected in serial with a photoconductive material layer to a voltage source, where the patterning beam optically modulates the impedance of the photoconductive material layer and therefore an electric field within the electro-optic material layer, the modulated electric field causing localized changes of refractive index in the electro-optic material layer to form the self-aligning and travelling optical component.
Abstract:
Various aspects of the present disclosure generally relate to a sensor module. In some aspects, a sensor module may include a collar configured to be attached to a camera module for a user device. The collar may include a first opening that is configured to align with an aperture of a camera of the camera module, and a second opening. The sensor module may include a sensor embedded in the collar. The sensor may be aligned with the second opening of the collar. Numerous other aspects are provided.
Abstract:
Disclosed herein are techniques for dynamically forming an optical component that automatically aligns with and changes positions with a scanning light beam to modify the wave front of the scanning light beam, such as collimating the scanning light beam. More specifically, a patterning beam that aligns with the scanning light beam may be scanned together with the scanning light beam to form the self-aligning and travelling optical component in an electro-optic material layer that is connected in serial with a photoconductive material layer to a voltage source, where the patterning beam optically modulates the impedance of the photoconductive material layer and therefore an electric field within the electro-optic material layer, the modulated electric field causing localized changes of refractive index in the electro-optic material layer to form the self-aligning and travelling optical component.