Abstract:
A method of adaptively selecting a configuration for a machine learning process includes determining current system resources and performance specifications of a current system. A new configuration for the machine learning process is determined based at least in part on the current system resources and the performance specifications. The method also includes dynamically selecting between a current configuration and the new configuration based at least in part on the current system resources and the performance specifications.
Abstract:
A method for selecting bit widths for a fixed point machine learning model includes evaluating a sensitivity of model accuracy to bit widths at each computational stage of the model. The method also includes selecting a bit width for parameters, and/or intermediate calculations in the computational stages of the mode. The bit width for the parameters and the bit width for the intermediate calculations may be different. The selected bit width may be determined based on the sensitivity evaluation.
Abstract:
The present disclosure presents a method and an apparatus for transmitting discovery signaling from a base station. For example, the method may include encoding a wireless fidelity (Wi-Fi) beacon at the base station for transmission and transmitting the encoded Wi-Fi beacon from the base station to one or more neighboring wireless nodes. The Wi-Fi beacon is generated by a Wi-Fi access point (AP) co-located at the base station which is a long term evolution (LTE) or LTE advanced in unlicensed spectrum base station. As such, other wireless nodes can discover the LTE or LTE advanced in unlicensed spectrum base station.
Abstract:
A method of wireless communication, comprising: detecting, at a mobile device, presence of one or more wide area networks (WANs) and one or more wireless local area networks (WLANs); determining, by the mobile device, a connection probability for at least one of the one or more WANs and for at least one of the one or more WLANs, wherein the connection probability is based at least in part on network conditions; and selecting, by the mobile device, a network to connect to based, at least in part, on the connection probability, wherein the network is one of the one or more WANs and one or more WLANs.
Abstract:
A system and method of managing adjustment of synchronization timing for handover of a mobile relay is disclosed. The method includes repositioning coverage of the mobile relay from a first network access point to a second network access point and adjusting a synchronization timing of the mobile relay in an asynchronous network of the wireless communication system.
Abstract:
A method of reducing computational complexity for a fixed point neural network operating in a system having a limited bit width in a multiplier-accumulator (MAC) includes reducing a number of bit shift operations when computing activations in the fixed point neural network. The method also includes balancing an amount of quantization error and an overflow error when computing activations in the fixed point neural network.
Abstract:
Methods and apparatuses are provided that include selecting resources for assigning to a device to mitigate relay self-interference when also communicating with a base station. The resources can be selected based on one or more factors, such as based on resources that are negotiated with the base station, or based on resources indicated as not desired for allocation from the base station, etc. In other examples, reference signals and control data can be communicated such as to mitigate relay self-interference as well.
Abstract:
For range expansion, a determination to enter range expansion may be made based on a signal strength differential for user equipment (UE) communications between a first class of base stations and a second class of base stations. If the signal strength differential is beyond a certain threshold, range expansion may be implemented. In range expansion, a signal is transmitted, on a resource coordinated with at least one of the first class of base stations, from one of the second class of base stations to the UE which could experience dominant interference from one of the first class of base stations if coordination were not performed. Transmission power may be reduced from one of the first class of base stations on that resource. The second signal may be transmitted within the region of the Physical Downlink Shared Channel.
Abstract:
Systems and methodologies are described herein that facilitate techniques for design of relay backhaul to support mobility of relay nodes in a wireless communication system. According to various aspects herein, techniques are provided to enable and support the use of mobile relays and to facilitate handover of mobile relays between respective donor cells. More particularly, techniques are provided herein for relay backhaul control channel assignment associated with hand in or hand out of mobile relays, access/backhaul resource partitioning for mobile relays, and management of quality of service (QoS) requirements associated with a relay handover.
Abstract:
Techniques for managing candidate sets for a user equipment (UE) are described. In an aspect, multiple candidate sets of cells of different classes may be maintained for the UE. Each candidate set may include cells of a particular class. As some examples, the multiple candidate sets may be for cells of different transmit power levels, cells of different association types, cells associated with different resources, etc. The multiple candidate sets may be maintained separately based on applicable criteria and rules. The multiple candidate sets may be used to select a serving cell for the UE and/or for other communication purposes for the UE. In another aspect, one or more candidate sets may be maintained for the UE and may be used for multiple communication purposes for the UE. The multiple communication purposes may include server selection, interference management, measurement reporting, etc.