Abstract:
A method of operation of an ultrasonic sensor array includes receiving a receiver bias voltage at a receiver bias electrode of the ultrasonic sensor array to bias piezoelectric sensor elements of the ultrasonic sensor array. The method further includes receiving a transmitter control signal at the ultrasonic sensor array to cause an ultrasonic transmitter of the ultrasonic sensor array to generate an ultrasonic wave. The method further includes generating data samples based on a reflection of the ultrasonic wave. The receiver bias voltage and the transmitter control signal are received from an integrated circuit that is coupled to the ultrasonic sensor array.
Abstract:
An apparatus includes an integrated circuit configured to be operatively coupled to a sensor array that is configured to generate an ultrasonic wave. The integrated circuit includes a transmitter circuit configured to provide a first signal to the sensor array. The integrated circuit further includes a receiver circuit configured to receive a second signal from the sensor array in response to providing the first signal. The sensor array includes an ultrasonic transmitter configured to generate the ultrasonic wave in response to the first signal and a piezoelectric receiver layer configured to detect a reflection of the ultrasonic wave.
Abstract:
Apparatus and method for generating a DC pixel voltage are disclosed. The apparatus includes an amplifier configured to amplify an input signal to generate a voltage signal, wherein the input signal is generated in response to an ultrasonic wave reflecting off an item-to-be-imaged and propagating via a piezoelectric layer; a noise reduction circuit configured to pass the voltage signal from an output of the amplifier to a node, while reducing a propagation of noise from the output of the amplifier to the node; and a circuit configured to generate a DC pixel voltage based on the reduced-noise voltage signal.
Abstract:
In an exemplary design, an apparatus (100) includes an amplifier (170), a boost converter (180), and a boost controller (190). The amplifier (170) receives an envelope signal (Venv) and a variable boosted supply voltage (Vboost) and provides an output voltage (Vout) and an output current (lout). The boost converter (180) receives a power supply voltage (Vbat) and at least one signal determined based on the envelope signal (Venv) and generates the variable boosted supply voltage (Vboost) based on the power supply voltage (Vbat) and the at least one signal. The boost controller (190) generates the at least one signal (e.g., an enable signal and/or a threshold voltage) for the boost converter (180) based on the envelope signal (Venv) and/or the output voltage (Vout). The boost converter (180) generates the variable boosted supply voltage (Vboost) based on the power supply voltage (Vbat) and the threshold voltage.
Abstract:
Techniques for dynamically generating a headroom voltage for an envelope tracking system. In an aspect, an initial headroom voltage is updated when a signal from a power amplifier (PA) indicates that the PA headroom is insufficient. The initial headroom voltage may be updated to an operating headroom voltage that includes the initial voltage plus a deficiency voltage plus a margin. In this manner, the operating headroom voltage may be dynamically selected to minimize power consumption while still ensuring that the PA is linear. In a further aspect, a specific exemplary embodiment of a headroom voltage generator using a counter is described.
Abstract:
Techniques for preventing reverse current in applications wherein a tracking supply voltage is placed in parallel with a switching power stage. The tracking supply voltage may be boosted to a level higher than a battery supply voltage using, e.g., a boost converter. In an aspect, a negative current detection block is provided to detect negative current flow from the boosted tracking supply voltage to the battery supply voltage. A high-side switch of the switching power stage may be disabled in response to detecting the negative current. To prevent false tripping, the tracking supply voltage may be further compared with the battery supply voltage, and a latch may be provided to further control the high-side switch.
Abstract:
Techniques for generating a boost clock signal for a boost converter from a buck converter clock signal, wherein the boost clock signal has a limited frequency range. In an aspect, the boost clock signal has a maximum frequency determined by Vbst / T, wherein Vbst represents the difference between a target output voltage and a battery voltage, and T represents a predetermined cycle duration. The boost converter may include a pulse insertion block to limit the minimum frequency of the boost clock signal, and a dynamic blanking / delay block to limit the maximum frequency of the boost clock signal. Further techniques are disclosed for generally implementing the minimum frequency limiting and maximum frequency limiting blocks.
Abstract:
Various features relate to a test ring including an integrated circuit. The test ring is located around a periphery of the integrated circuit. The test ring includes a first terminal, a second terminal, and a first circuit element, wherein the first terminal is coupled to the first circuit element, and the first circuit element is coupled to the second terminal, wherein the first terminal, the first circuit element and the second terminal are coupled together in series.
Abstract:
The present disclosure includes envelope tracking circuits and methods with adaptive switching frequency. In one embodiment, a circuit comprising an amplifier to receive an envelope tracking signal having an envelope tracking frequency and output voltage and current to a power supply terminal of a power amplifier circuit. A programmable comparator receives an output signal from the amplifier and generates a switching signal having a switching frequency. A switching regulator stage receives the switching signal and outputs a switching current to the power supply terminal. A frequency comparison circuit configures the programmable comparator based on the envelope tracking frequency and the switching frequency so that the switching frequency tracks the envelope tracking frequency.