Abstract:
Methods and apparatus are described for providing location assistance information to a mobile device. An example of a method for providing location assistance information to the mobile device by a femto base station includes receiving a macro base station signal during a monitoring time period during which the femto base station is substantially stationary, obtaining location assistance information, the location assistance information being based, at least in part, on the received macro base station signal, and transmitting the location assistance information to the mobile device.
Abstract:
An apparatus and method for providing an improved heading estimate of a mobile device in a vehicle is presented. First, the mobile device determines if it is mounted in a cradle attached to the vehicle; if so, inertia sensor data may be valid. While in a mounted stated, the mobile device determines whether it has been rotated in the cradle; if so, inertia sensor data may no longer be reliable and a recalibration to determine a new relative orientation between the vehicle and the mobile device is needed. If the mobile device is mounted and not recently rotated, heading data from multiple sensors (e.g., GPS, gyroscope, accelerometer) may be computed and combined to form the improved heading estimate. This improved heading estimate may be used to form an improved velocity estimate. The improved heading estimate may also be used to compute a bias to correct a gyroscope.
Abstract:
Methods, apparatuses, and devices for generating one or more harsh or diminished radiofrequency environments relative to a planned route of a mobile device user. In one example, a mobile device user a be routed through a harsh or diminished radiofrequency environment based, at least in part, on a sensor suite of a mobile device and/or based on a user's preferences. Prior to entry into such an environment, various sensors may be activated in a manner that permits position estimation in an absence of SPS based positioning signals and/or TPS based positioning signals.
Abstract:
An apparatus and method for providing an improved heading estimate of a mobile device in a vehicle is presented. First, the mobile device determines if it is mounted in a cradle attached to the vehicle; if so, inertia sensor data may be valid. While in a mounted stated, the mobile device determines whether it has been rotated in the cradle; if so, inertia sensor data may no longer be reliable and a recalibration to determine a new relative orientation between the vehicle and the mobile device is needed. If the mobile device is mounted and not recently rotated, heading data from multiple sensors (e.g., GPS, gyroscope, accelerometer) may be computed and combined to form the improved heading estimate. This improved heading estimate may be used to form an improved velocity estimate. The improved heading estimate may also be used to compute a bias to correct a gyroscope.
Abstract:
A method for assisting a mobile device to perform positioning measurements on positioning signals periodically transmitted by at least some of a plurality of cells in a wireless communication network includes determining an estimated position of the mobile device and then determining a first set of candidate cells of the plurality of cells based on the estimated position of the mobile device. The method also includes estimating an expected interference of each respective positioning signal that is transmitted by each candidate cell of the first set and selecting a subset of cells from the first set of candidate cells based on the estimated expected interference. Assistance data identifying the selected subset of cells is then generated and sent to the mobile device.
Abstract:
A method for assisting a mobile device to perform positioning measurements on positioning signals periodically transmitted by at least some of a plurality of cells in a wireless communication network includes determining an estimated position of the mobile device and then determining a first set of candidate cells of the plurality of cells based on the estimated position of the mobile device. The method also includes estimating an expected interference of each respective positioning signal that is transmitted by each candidate cell of the first set and selecting a subset of cells from the first set of candidate cells based on the estimated expected interference. Assistance data identifying the selected subset of cells is then generated and sent to the mobile device.
Abstract:
Techniques are provided which may be implemented using various methods and/or apparatuses to determine time difference of arrival of signals from two base stations as received at a mobile device, to use the time difference of arrival to determine differential forward link calibration for at least two base stations, and also to determine location using the differential forward link calibration for at least two base stations, determined using the time difference of arrival of signals from at least two base stations as received by a mobile device.