Abstract:
Certain aspects of the present disclosure provide techniques for defending against false semi-persistent scheduling (SPS) activation detection and/or missed SPS release. According to certain aspects, a user equipment (UE) may detect one or more conditions for a semi-persistent scheduling (SPS) activation or release are met based on a downlink transmission, generate one or more metrics related to downlink transmission, and determine a valid SPS activation or release has occurred if the one or more metrics satisfy one or more criteria. According to certain aspects, a UE may determine a valid semi-persistent scheduling (SPS) activation has occurred, detect a number of PDSCH CRC failures, and implicitly declare an SPS release based on the detection.
Abstract:
A method for antenna switching is described. The method includes transmitting using a first antenna. The method also includes determining that a trigger occurs to switch to transmitting using a second antenna. The trigger is based on a combination of a physical uplink shared channel (PUSCH) maximum transmit power level (MTPL) counter and a physical uplink control channel (PUCCH) MTPL counter. The method further includes switching to transmitting using the second antenna based on the determination.
Abstract:
Techniques for optimized HARQ recombining are provided. In one exemplary embodiment, a method for wireless communication comprises receiving a broadcast message to determine a timing of a transmission window, receiving at least one transmission within the transmission window, and determining whether the at least one transmission is successfully decoded. The method further comprises instructing a lower protocol layer to ignore remaining transmissions within the transmission window upon a determination that the at least one transmission is successfully decoded, wherein the remaining transmissions and the at least one transmission comprise duplicate copies of a message segment.
Abstract:
The disclosure relates to position sensors. An apparatus in accordance with aspects of the disclosure, the apparatus includes a wireless transceiver configured to transmit and receive wireless signals, a SPS receiver configured to receive SPS signals, memory, and a processor. The processor/memory may be configured to generate SPS-based location data using the SPS receiver in response to receipt of a MDT measurement request, determine whether the SPS-based location data is accurate or not accurate, in response to a determination that the SPS-based location data is not accurate, generate network-based location data using the wireless transceiver and include the network-based location data in an MDT report, in response to a determination that the SPS-based location data is accurate, include the SPS-based location data in the MDT report, and transmit the MDT report, wherein the MDT report includes one or both of the SPS-based location data and/or the network-based location data.
Abstract:
A person may utilize multiple connected devices, such as smart watches, user equipments (UEs), smartphones, tablet computers, and/or the like, which may each be assigned unique phone numbers. Operators may assign a common phone number to the multiple connected devices; however, the phone number is not used in the access stratum path of a radio access technology resulting in multiple paging procedures being performed for the multiple connected devices. In implementations, described herein, a first UE, such as a smartphone, may obtain paging information associated with decoding paging messages for a second UE, such as a smart watch. The first UE may use the paging information to decode a paging message of a combined paging cycle established for the first UE and the second UE, thereby obviating a need for multiple paging cycles for the first UE and the second UE.
Abstract:
A method for antenna switching is described. The method includes transmitting using a first antenna. The method also includes determining that a trigger occurs to switch to transmitting using a second antenna. The trigger is based on a combination of a physical uplink shared channel (PUSCH) maximum transmit power level (MTPL) counter and a physical uplink control channel (PUCCH) MTPL counter. The method further includes switching to transmitting using the second antenna based on the determination.
Abstract:
In one aspect of the disclosure, a UE may receive a TA command in connection with a contention-based RACH procedure. In response to receiving the TA command, the UE may start a TA timer. The TA timer defines an interval during which subsequent TA commands received in connection with the contention-based RACH procedure are disregarded. The UE may detect an out-of-sync condition during the interval. The UE may stop the TA timer if the out-of-sync condition is detected. In another aspect, an eNB may perform a contention-based RACH procedure with a UE. The eNB may receive a reconfiguration complete message from the UE in connection with the contention-based RACH procedure. In response to the reconfiguration complete message, the eNB may send a TA command to the UE. The eNB may refrain from sending TA information prior to receiving the reconfiguration complete message.
Abstract:
Certain aspects of the present disclosure relate to techniques and apparatus for a user equipment (UE) to delay RLC retransmissions (e.g., during off-durations, including CDRX off-durations). According to aspects of the present disclosure, a UE may delay triggering an RLC retransmission of an RLC PDU until after a next opportunity for the UE to receive an RLC ACK of the RLC PDU. By delaying RLC retransmissions, a UE may be prevented from waking up from one or more CDRX off-durations and using power associated with waking up from the one or more CDRX off-durations.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus is a UE. The UE transmits data packets. The UE determines to implement a flow control to reduce a transmission rate of the data packets. The UE determines whether the data packets include known or potential real-time data packets. The UE refrains from implementing the flow control to reduce the transmission rate of the known/potential real-time data packets when the data packets include known/potential real-time data packets.