SYSTEMS AND METHODS OF MERGING MULTIPLE MAPS FOR COMPUTER VISION BASED TRACKING
    1.
    发明申请
    SYSTEMS AND METHODS OF MERGING MULTIPLE MAPS FOR COMPUTER VISION BASED TRACKING 审中-公开
    用于基于计算机视觉的跟踪的多个MAPS的系统和方法

    公开(公告)号:WO2014070390A1

    公开(公告)日:2014-05-08

    申请号:PCT/US2013/063876

    申请日:2013-10-08

    CPC classification number: G06T11/60 G06K9/3241 G06K9/38 G06T7/579

    Abstract: Method, apparatus, and computer program product for merging multiple maps for computer vision based tracking comprises receiving a plurality of maps of a scene in a venue from at least one mobile device, identifying multiple keyframes of the plurality of maps of the scene, and eliminating redundant keyframes to generate a global map of the scene.

    Abstract translation: 用于合并用于基于计算机视觉的跟踪的多个地图的方法,装置和计算机程序产品包括从至少一个移动设备接收场地中的场景的多个地图,识别场景的多个地图中的多个关键帧,以及消除 冗余关键帧来生成场景的全局映射。

    UPDATING FILTER PARAMETERS OF A SYSTEM
    2.
    发明申请
    UPDATING FILTER PARAMETERS OF A SYSTEM 审中-公开
    更新系统的过滤器参数

    公开(公告)号:WO2015048474A1

    公开(公告)日:2015-04-02

    申请号:PCT/US2014/057759

    申请日:2014-09-26

    Abstract: Techniques are disclosed for estimating one or more parameters in a system. A device obtains measurements corresponding to a first set of features and a second set of features. The device estimates the parameters using an extended Kalman filter based on the measurements corresponding to the first set of features and the second set of features. The measurements corresponding to the first set of features are used to update the one or more parameters, and information corresponding to the first set of features. The measurements corresponding to the second set of features are used to update the parameters and uncertainty corresponding to the parameter. In on example, information corresponding to the second set of features is not updated during the estimating. Moreover, the parameters are estimated without projecting the information corresponding to the second set of features into a null-space.

    Abstract translation: 公开了用于估计系统中的一个或多个参数的技术。 设备获得对应于第一组特征和第二组特征的测量值。 该设备基于与第一组特征和第二组特征相对应的测量使用扩展卡尔曼滤波器来估计参数。 对应于第一组特征的测量用于更新一个或多个参数以及对应于第一组特征的信息。 对应于第二组特征的测量用于更新与参数对应的参数和不确定性。 在示例中,在估计期间不更新与第二组特征对应的信息。 此外,估计参数而不将与第二组特征对应的信息投影到空空间中。

    ROBOT CONTROL BASED ON VISION TRACKING OF A REMOTE MOBILE DEVICE HAVING A CAMERA
    3.
    发明申请
    ROBOT CONTROL BASED ON VISION TRACKING OF A REMOTE MOBILE DEVICE HAVING A CAMERA 审中-公开
    基于具有摄像机的远程移动设备的视觉跟踪的机器人控制

    公开(公告)号:WO2014039309A1

    公开(公告)日:2014-03-13

    申请号:PCT/US2013/056649

    申请日:2013-08-26

    CPC classification number: B25J9/1697 G05B2219/36488 G05B2219/39449

    Abstract: Vision based tracking of a mobile device is used to remotely control a robot. For example, images captured by a mobile device, e.g., in a video stream, are used for vision based tracking of the pose of the mobile device with respect to the imaged environment. Changes in the pose of the mobile device, i.e., the trajectory of the mobile device, are determined and converted to a desired motion of a robot that is remote from the mobile device. The robot is then controlled to move with the desired motion. The trajectory of the mobile device is converted to the desired motion of the robot using a transformation generated by inverting a hand-eye calibration transformation.

    Abstract translation: 使用移动设备的基于视觉的跟踪来远程控制机器人。 例如,由移动设备(例如,视频流)捕获的图像被用于基于对于成像环境的基于视觉的跟踪移动设备姿态的跟踪。 确定移动设备的姿势,即移动设备的轨迹的变化,并将其转换为远离移动设备的机器人的期望的运动。 然后控制机器人以期望的运动移动。 使用通过反转手眼校准变换产生的变换将移动设备的轨迹转换为机器人的期望运动。

    ADAPTIVE SWITCHING BETWEEN A VISION AIDED INTERTIAL CAMERA POSE ESTIMATION AND A VISION BASED ONLY CAMERA POSE ESTIMATION
    6.
    发明申请
    ADAPTIVE SWITCHING BETWEEN A VISION AIDED INTERTIAL CAMERA POSE ESTIMATION AND A VISION BASED ONLY CAMERA POSE ESTIMATION 审中-公开
    视觉辅助摄像机位置估计与视觉之间的自适应切换仅基于摄像机位置估计

    公开(公告)号:WO2013188308A1

    公开(公告)日:2013-12-19

    申请号:PCT/US2013/045012

    申请日:2013-06-10

    CPC classification number: G06T7/2053 G01S3/786 G06T7/254 G06T2207/10016

    Abstract: A mobile device tracks a relative pose between a camera and a target using Vision aided Inertial Navigation System (VINS), that includes a contribution from inertial sensor measurements and a contribution from vision based measurements. When the mobile device detects movement of the target, the contribution from the inertial sensor measurements to track the relative pose between the camera and the target is reduced or eliminated. Movement of the target may be detected by comparing vision only measurements from captured images and inertia based measurements to determine if a discrepancy exists indicating that the target has moved. Additionally or alternatively, movement of the target may be detected using projections of feature vectors extracted from captured images.

    Abstract translation: 移动设备使用视觉辅助惯性导航系统(VINS)跟踪摄像机和目标之间的相对姿态,其包括来自惯性传感器测量的贡献以及基于视觉的测量的贡献。 当移动设备检测到目标的移动时,减少或消除了惯性传感器测量对跟踪相机和目标之间的相对姿势的贡献。 可以通过仅从仅捕获图像的测量值和基于惯量的测量结果来比较目标的移动是否存在指示目标已移动的差异,来检测目标的移动。 附加地或替代地,可以使用从捕获的图像提取的特征向量的投影来检测目标的移动。

Patent Agency Ranking