Abstract:
A throttling mechanism for downlink transmission control is disclosed, in which, in one aspect, a downlink low data-rate transmission may be received at a user equipment (UE). The UE may then measure a performance metric indicating performance of the downlink low data-rate transmission. The UE controls the downlink low data-rate transmission by dynamically adjusting the number of receiving antennas in use in response to comparison results of the performance metric and a threshold value.
Abstract:
Methods and devices are disclosed for managing multiple-input multiple-output (MIMO) mode on a multi-SIM wireless device. The wireless device may determine whether all of the SIMs are in an active state, and identify each active SIM and each RF resource that is associated with an inactive SIM if less than all of the SIMs are in the active state. The wireless device may determine whether at least one identified active SIM and at least one identified RF resource satisfy MIMO criteria. Upon determining that at least one identified active SIM and at least one identified RF resource satisfy the MIMO criteria, the wireless device may allocate, for use in MIMO operations, the at least one identified RF resource to a protocol stack associated with a selected one of the at least one identified active SIM.
Abstract:
Minimizing conflicts between different radio access technologies (RATs) is disclosed herein which include monitoring, by a user equipment (UE), a first use of a UE Radio Frequency (RF) resource by a first Radio Access Technology (RAT). The UE monitors a second use of the UE resource by a second RAT. The UE is served by a current serving cell in the second RAT. The UE may also determine a percentage of conflict between a first use of a UE resource by a first RAT and the second use of the UE resource by the second RAT over a predefined period of time, and initiating, by the UE, a cell reselection attempt to one or more neighboring cells of a plurality of neighboring cells serving the second RAT based on the determined percentage of conflict exceeding a predetermined threshold.
Abstract:
Various embodiments implemented on a mobile communication device provide methods for skipping power measurements of frequency bands included in a list of frequency bands received from a first subscription's network to conserve power and to increase the likelihood of avoiding a coexistence event between a first subscription and a second subscription. Specifically, a processor of the mobile communication device may order the list of frequency bands such that non-interfering frequency bands are ordered before interfering frequency bands. The processor may then take power measurements of frequency bands in the list, in order, until the processor determines that a power measurement has satisfied a minimum power threshold. In response to such a determination, the device processor may report the power measurement that satisfies the minimum power threshold to the first subscription's network and may not take any more power measurements of the remaining frequency bands in the list.
Abstract:
Methods, systems and devices are provided for selecting one or more target devices for device-to-device (D2D) communication with a device. A device processor may determine whether a battery power level of the device is below a threshold battery power level. The device processor may establish a received power level threshold in response to determining that the battery power level of the device is below a threshold power battery level. The device processor may determine whether a received power level of a signal from target devices for D2D communication is above the received power level threshold. In response to determining that the received power level from a target device is above the received power level threshold, the device processor may permit D2D communication with that target device.
Abstract:
Various embodiments implemented on a mobile communication device provide methods for skipping power measurements of frequency bands included in a list of frequency bands received from a first subscription's network to conserve power and to increase the likelihood of avoiding a coexistence event between a first subscription and a second subscription. Specifically, a processor of the mobile communication device may order the list of frequency bands such that non-interfering frequency bands are ordered before interfering frequency bands. The processor may then take power measurements of frequency bands in the list, in order, until the processor determines that a power measurement has satisfied a minimum power threshold. In response to such a determination, the device processor may report the power measurement that satisfies the minimum power threshold to the first subscription's network and may not take any more power measurements of the remaining frequency bands in the list.
Abstract:
Minimizing conflicts between different radio access technologies (RATs) is disclosed herein which include monitoring, by a user equipment (UE), a first use of a UE Radio Frequency (RF) resource by a first Radio Access Technology (RAT). The UE monitors a second use of the UE resource by a second RAT. The UE is served by a current serving cell in the second RAT. The UE may also determine a percentage of conflict between a first use of a UE resource by a first RAT and the second use of the UE resource by the second RAT over a predefined period of time, and initiating, by the UE, a cell reselection attempt to one or more neighboring cells of a plurality of neighboring cells serving the second RAT based on the determined percentage of conflict exceeding a predetermined threshold.
Abstract:
Various embodiments implemented on a mobile communication device provide methods for skipping power measurements of frequency bands included in a list of frequency bands received from a first subscription's network to conserve power and to increase the likelihood of avoiding a coexistence event between a first subscription and a second subscription. Specifically, a processor of the mobile communication device may order the list of frequency bands such that non-interfering frequency bands are ordered before interfering frequency bands. The processor may then take power measurements of frequency bands in the list, in order, until the processor determines that a power measurement has satisfied a minimum power threshold. In response to such a determination, the device processor may report the power measurement that satisfies the minimum power threshold to the first subscription's network and may not take any more power measurements of the remaining frequency bands in the list.