Abstract:
A balanced power amplifier circuit arrangement comprises a driver amplifier stage (22) adapted to receive and amplify a signal. The amplified signal is input to a first coupler (26). The first coupler (26) produces an in-phase signal and an out-of-phase quadrature signal. A first power amplifier (38) receives and amplifies the in-phase signal. A second power amplifier (40) receives and amplifies the out-of-phase signal. A first switch (28) alternately connects an isolated port of the first coupler to ground (32) or a bypass path (36). A second coupler (42) receives and combines the amplified in-phase signal and the amplified out-of-phase signal to produce a combined signal. A second switch (30) alternately connects an isolated port of the second coupler (42) to either ground (34) or the bypass path (36). When the power amplifiers (38, 40) are powered down, the first coupler (26) splits the RF-signal into an in-phase signal and an out-of-phase signal. The power amplifiers (38, 40) appear as reflective impedances to the signal when they are powered down. Each signal reflects off the first and second power amplifiers (38, 40), respectively. The first coupler (26) combines the reflected signals and routes the combined signal through the bypass path (36) to the second coupler (42). The second coupler (42) splits the signal into an in-phase and out-of-phase signal and routes each to the power amplifiers (38, 40). The power amplifiers (38, 40) reflect each signal back to the second coupler (42). The second coupler (42) combines the signals and routes the combined signal to the RF-output port. The circuit arrangement enables the integration of the balanced amplifier and first and second couplers (26, 42) into a single power amplifier package to provide low power bypassing without the need of an external circulator component.
Abstract:
Power detectors sense load mismatch conditions and cause the power output of a power amplifier to be reduced in response to a load mismatch. Transmitted and reflected power measurements are used to calculate a load mismatch criterion. A power amplifier is configured based on the calculated load mismatch criterion. A dual-directional coupler may be used to separate a power signal into transmitted and reflected components. With output power reduced under load mismatch conditions, signal distortion levels may be reduced to acceptable levels.
Abstract:
Certain aspects of the present disclosure provide a circuit for dividing or combining power. The circuit generally includes a Wilkinson power divider, a first capacitive element, and a first resistive element coupled in parallel with the first capacitive element, wherein the first capacitive element and the first resistive element are coupled between a first port of the circuit and a first port of the Wilkinson power divider.
Abstract:
Devices and methods for controlling a power supply of a wireless power transmitter based on the request of a wireless power receiver are disclosed. One embodiment provides a wireless power receiver. The wireless power receiver includes a power receiver circuit configured to receive power from a wireless power transmitter at a level sufficient to power or charge a load. The wireless power receiver also includes a processor circuit configured to adjust a level of the received power being provided to the load based on a change in a level of received power to be requested to the wireless power transmitter. The processor circuit is further configured send to the wireless power transmitter the request to change the level of the received power to a first different level.
Abstract:
A balanced power amplifier circuit arrangement comprises a driver amplifier stage (22) adapted to receive and amplify a signal. The amplified signal is input to a first coupler (26). The first coupler (26) produces an in-phase signal and an out-of-phase quadrature signal. A first power amplifier (38) receives and amplifies the in-phase signal. A second power amplifier (40) receives and amplifies the out-of-phase signal. A first switch (28) alternately connects an isolated port of the first coupler to ground (32) or a bypass path (36). A second coupler (42) receives and combines the amplified in-phase signal and the amplified out-of-phase signal to produce a combined signal. A second switch (30) alternately connects an isolated port of the second coupler (42) to either ground (34) or the bypass path (36). When the power amplifiers (38, 40) are powered down, the first coupler (26) splits the RF-signal into an in-phase signal and an out-of-phase signal. The power amplifiers (38, 40) appear as reflective impedances to the signal when they are powered down. Each signal reflects off the first and second power amplifiers (38, 40), respectively. The first coupler (26) combines the reflected signals and routes the combined signal through the bypass path (36) to the second coupler (42). The second coupler (42) splits the signal into an in-phase and out-of-phase signal and routes each to the power amplifiers (38, 40). The power amplifiers (38, 40) reflect each signal back to the second coupler (42). The second coupler (42) combines the signals and routes the combined signal to the RF-output port. The circuit arrangement enables the integration of the balanced amplifier and first and second couplers (26, 42) into a single power amplifier package to provide low power bypassing without the need of an external circulator component.