Abstract:
Apparatuses and methods are disclosed regarding a multiband transmitter. In an example aspect, an apparatus for processing signals for wireless transmission includes a wireless interface device. The wireless interface device includes an upconverter, a tunable filter, and a driver amplifier. The upconverter has an output and is configured to upconvert a baseband frequency to a radio frequency based on a local oscillator signal. The tunable filter has an input and an output; the input of the tunable filter is coupled to the output of the upconverter. The driver amplifier has an input; the input of the driver amplifier is coupled to the output of the tunable filter.
Abstract:
An apparatus and a method are disclosed for synchronizing clock signals distributed within a wireless device. In some embodiments, a local oscillator (LO) clock signal is buffered and distributed to two or more transceivers within the wireless device. Each transceiver may include a configurable clock divider to divide the distributed LO clock signal and generate an output clock signal. A phase detector compares output clock signals from each of the configurable clock dividers and generates an output signal in accordance with a determined phase difference. The phase detector output signal may cause at least one of the configurable clock dividers to modify its respective output clock signal, and thereby synchronize output clock signals between different configurable clock dividers. In some embodiments, a clock signal from a configurable clock divider may be modified (shifted) by approximately 90 or 180 degrees.
Abstract:
A power amplifier bias circuit having high dynamic range and low memory is disclosed. In an exemplary embodiment, an apparatus includes an output stage (308) configured to generate a biased RF signal based on a first DC signal and a filtered signal. The apparatus also includes a low pass filter (306) configured to filter the biased RF signal to generate the filtered signal.
Abstract:
Methods and circuits can down convert at least a first RF signal on a first path in a first frequency band to provide a first IF signal. A second RF signal on second path in a second frequency band can be down converted to provide a second IF signal. The first IF signal and the second IF signal are interspersed in the frequency domain, and the first frequency band is different from the second frequency band. A combiner can combine at least part of the first IF signal and the second IF signal to provide a combined signal on an output signal path for reception by a digital processing circuit. The first IF signal or second IF signal can be a Zero IF (ZIF), very low IF (VLIF), or Low IF (LIF) signal.
Abstract:
An amplifier includes a gain transistor including a control terminal to receive an input signal. A degeneration inductor is coupled between the first terminal of the gain transistor and ground. A shunt inductor and a capacitor are coupled in series between the control terminal of the gain transistor and ground, and form a filter to attenuate frequencies of the input signal within a frequency range. The degeneration inductor and the shunt inductor form a transformer to provide impedance matching.
Abstract:
A reconfigurable LNA (104) for increased jammer rejection is disclosed. An exemplary embodiment includes an LNA (104) having a tunable resonant frequency, and a detector (132) configured to output a control signal to tune the resonant frequency of the LNA (104) to increase jammer suppression. An exemplary method includes detecting if a jammer is present, tuning a resonant frequency of an LNA (104) away from the jammer to increase jammer rejection if the jammer is present, and tuning the resonant frequency of the LNA (104) to a selected operating frequency if the jammer is not present.
Abstract:
Techniques for optimizing gain or noise figure of an RF receiver are disclosed. In an exemplary embodiment a controller controls a capacitor bank between an LNA and a mixer of the RF front end of the receiver. For a given center frequency a first set of capacitors is switched to the mixer and a second set of capacitors is switched to ground. The ratio of capacitance of the second set to the first set of capacitors affects either gain of the RF FE or noise figure of the receiver. Therefore, the RF FE of the receiver may be controlled in such a way as to optimize for either RF FE gain or for receiver noise figure.
Abstract:
An improved active or passive double balanced mixer with reduced capacitor voltage mismatch is described. The double balanced mixer includes two sets of mixer circuits, each comprised of switches. Each switch is separately divided into a first portion and a second portion of unequal number of fingers. A first and second LO AC coupling capacitors associated with a given switch are coupled at one end to an LO signal. The outputs of the first LO AC coupling capacitors are coupled to the first portion of the first switch and the second portion of the second switch, respectively, while the outputs of the second LO AC coupling capacitors are coupled to the second portion of the first switch and the first portion of the second switch, respectively. In one embodiment, the unequal number of fingers is defined by an n-1 and an n+1 number of fingers, respectively. In an alternate embodiment, the mixer is an ADB mixer with a transconductance amplifier and two sets of mixer circuits as above.
Abstract:
A radio frequency (RF) receiver, for example a satellite positioning system receiver, can be configured to use a single phase locked loop for generating an oscillator signal to perform downconversion of signals in two different frequency bands using two or more local oscillators. A first RF signal portion includes a first signal band and undergoes double downconversion using a first mixer and a second mixer, while a second RF signal portion includes a second signal band and undergoes single downconversion using a single mixer. A controller is configured to determine a first oscillator divider value and a second oscillator divider value to avoid a jammer frequency and frequency dividers are used to generate the two or more local oscillators.
Abstract:
A method, an apparatus, and a system product for mixing radio frequency signals are provided. In one aspect, the apparatus is configured to perform switching of switches based on first, second, third, and fourth phased half duty clock signals. The apparatus convolves a differential input signal on a differential input port with the first, second, third, and fourth phased half duty cycle clock signals to concurrently generate a differential in-phase output signal and a differential quadrature-phase output signal on a dual differential output port. The first, second, third, and fourth phased half duty cycle clock signals are of the same frequency and out of phase by a multiple of ninety degrees with respect to each other.