Abstract:
A circuit includes a first path including a first transistor and a first current source. The first transistor is responsive to a tuning voltage. The circuit also includes a tuning voltage range extension circuit responsive to the tuning voltage. The tuning voltage range extension circuit is configured to selectively change current supplied by the first path as the tuning voltage exceeds a capacity threshold of the first transistor.
Abstract:
A memory device includes a core array that includes memory cells. The memory device also includes a headswitch coupled to the core array and a positive supply voltage. The headswitch reduces leakage current from the core array by disconnecting the core array from the positive supply voltage. Additionally, head switches are added for pre-charge devices to further reduce leakage current.
Abstract:
Techniques for replacing and eliminating paths causing channel leakage current. In one embodiment, one or more precharge enable transistors and a precharge enable signal are added to a circuit configuration. The precharge enable transistors are designed to remain on and simply pass a signal in a properly functioning path. When a leakage path is identified, such as during IDDQ testing, the precharge enable signal is set to turn off the precharge enable transistors. When the precharge enable transistors are off, the leakage path is disrupted, and the leakage current stopped. The path may be replaced with a redundant path.
Abstract:
A CMOS integrated circuit (e.g., an SRAM or a DRAM) is partitioned into a core block, a peripheral block, and a retention block. The core block includes circuits (e.g., memory cells) that are powered on at all times and is coupled directly to power supply and circuit ground. The peripheral block includes circuits that may be powered on or off and are coupled to the power supply via a head switch and/or to circuit ground via a foot switch. The switches and the core block may be implemented with high threshold voltage (high-Vt) FET devices to reduce leakage current. The peripheral block may be implemented with low-Vt FET devices for high-speed operation. The retention block includes circuits (e.g., pull-up devices) that maintain signal lines (e.g., word lines) at a predetermined level so that the internal states of the core block are retained when the peripheral block is powered off.
Abstract:
Power saving for hot plug detect (HPD) is disclosed. In a particular embodiment, a method includes detecting, at a source device that is connectable to a sink device, a connection of the source device to the sink device via a connector. The source device includes a DC voltage source and the connection is detected without consuming power from the DC voltage source.
Abstract:
In a particular embodiment, a memory device includes a first memory cell and a second memory cell. The memory device also includes a first bit line associated with the first memory cell and a second bit line associated with the second memory cell. The memory device also includes a source line coupled to the first memory cell and coupled to the second memory cell. The memory cell may be formed by spin transfer torque magnetoresistive memory cells having selection field effect transistors. The memory cell may also be formed as complementary cell pairs. Half-selected cells are supplied with or across them to prevent read disturb.
Abstract:
A differential voltage mode driver for implementing symmetric single ended termination includes an output driver circuitry having a predefined termination impedance. The differential voltage mode driver also includes an output driver replica having independently controlled first and second portions. The first and second portions are independently controlled to establish a substantially equal on-resistance of the first and the second portions. The output driver replica controls the predefined termination impedance of the output driver circuitry.
Abstract:
A circuit includes a controllable oscillator and a controller coupled to the controllable oscillator. The controller is configured to provide a current control and a gain control to the controllable oscillator. The gain control is configured to change a gain of the controllable oscillator during a calibration process.
Abstract:
System and method for testing a high speed data path without generating a high speed bit clock, includes selecting a first high speed data path from a plurality of data paths for testing. Coherent clock data patterns are driven on one or more of remaining data paths of the plurality of data paths, wherein the coherent clock data patterns are in coherence with a low speed base clock. The first high speed data path is sampled by the coherent clock data patterns to generate a sampled first high speed data path, which is then tested at a speed of the low speed base clock.
Abstract:
A system and method to read and write data in magnetic random access memories are disclosed. In a particular embodiment, a device (100) includes a spin transfer torque magnetic tunnel junction (STT-MT J) element (102) and a transistor (104) with a first gate (106) and a second gate (108) coupled to the STT-MTJ element.