Abstract:
A focal plane array having: an imaging array section, comprising: an array of electromagnetic radiation detectors; and an address section providing outputs from selectively enabled detectors. The imaging array section comprises a plurality of circuit blocks, each one of the circuit blocks having a primary circuit and a redundant circuit. Test circuitry is provided for supplying test signals to test each one of the primary circuits and determining whether a response from the test signals is proper or improper and for storing in the test circuitry in response to such determining select signals associated with each one of the tested circuit blocks. An array controller is provided for, during a subsequent normal operating mode, providing timing pulses to the address section wherein the address section selectively enables the detectors using either the primary or redundant circuits in the plurality of circuit blocks selectively in accordance with the stored select signals.
Abstract:
A focal plane array having: a plurality of detectors; a plurality of unit cell sections, each section being fed by charge produced by corresponding detector for producing a sequence of frames; and a plurality of sets of storage sections, each section being coupled to a corresponding one of the unit cells. Each set of storage sections includes a plurality of storage units for sequentially storing the frames. A region of interest selector section examines the frames of the plurality of unit cells, to detect at least one of the frames having a predetermined characteristic. A processor: (i) identifies a sub-set of the plurality of unit cells proximate the detected unit cells having the predetermined characteristic to establish a region of interest; and (ii) sequentially reads the plurality of storage units in the storage sections coupled to the sub-set of unit cells in the established region of interest.
Abstract:
Methods and systems for digitally decoding integrated circuit blocks are provided. A method for decoding integrated circuit blocks may include providing a previous block output and an increment value input to a first identification block of a first integrated circuit block, providing the output of the first identification t block and the increment value input to one of a plurality of intermediate identification blocks, and providing an output of the last of the plurality of intermediate identification blocks and the increment value input to a last identification block, wherein the output of the last identification block is indicative of the number of integrated circuit blocks.
Abstract:
A unit cell includes a MOSFET and an integration capacitor. The MOSFET includes a source, a drain, and a gate. The drain is coupled to the source, and the MOSFET is operable to store a first portion of an electric charge corresponding to a detected light intensity. The integration capacitor includes a first end and a second end. The first end is coupled to the drain of the MOSFET and the second end is coupled to a ground. The integration capacitor is operable to store a second portion of the electric charge corresponding to the detected light intensity.
Abstract:
A combined scanning and staring (SCARING) focal plane array (FPA) imaging system having a plurality of modes of operation is provided. In one example, the SCARING FPA system includes a photodetector array with a plurality of photodetectors arranged in a plurality of photodetector rows, a readout integrated circuit (ROIC) coupled to the photodetector array, and a processor coupled to the ROIC. The processor coupled to the ROIC is configured to dynamically configure the SCARING FPA between a scanning mode of operation and a staring mode of operation.
Abstract:
A flip-flop having a first storage circuit having a first input fed by the true logic signal and a second input fed by the complement of the logic signal. A second storage circuit has a pair of inputs coupled to the first storage circuit. In response to one clock signal: the first storage circuit passes the true and complement logic signals for storage therein while the second storage circuit prevents the true and complement logic signals stored in the first storage circuit from passing to the second circuit. In response to a subsequent clock signal; the first storage circuit prevents the true and complement logic signals from passing for storage in the first storage circuit while the second storage circuit passes the true and complement logic signals stored in the first storage circuit at the outputs of the first storage circuit to the second storage circuit for storage therein.
Abstract:
A unit cell includes a MOSFET and an integration capacitor. The MOSFET includes a source, a drain, and a gate. The drain is coupled to the source, and the MOSFET is operable to store a first portion of an electric charge corresponding to a detected light intensity. The integration capacitor includes a first end and a second end. The first end is coupled to the drain of the MOSFET and the second end is coupled to a ground. The integration capacitor is operable to store a second portion of the electric charge corresponding to the detected light intensity.