Abstract:
A release mechanism (108, 109, 111) includes a frame (204, 308, 502, 703) with an interior (503). The release mechanism also includes a prestrained shape memory alloy element (202, 306, 410, 506, 702, 802, 806) coupled to the interior of the frame. The prestrained element creates a seal with the frame. The prestrained element is notched in one or more regions and is configured to fracture in the notched regions when heated to a predetermined temperature allowing the interior to open. The remaining regions of the prestrained element are unfractured.
Abstract:
A heat-activated triggering device, such as for a missile or munition, includes a bi-metal trigger element, with a breakable pin of a first metal surrounded by a sleeve made of a second metal that is different than the first metal. The sleeve may be made of a shape memory alloy, such as a single-crystal shape memory alloy, that is pre-compresses around part of the pin. The sleeve may be configured to put a tension force on the pin as the sleeve passes a predetermined temperature, for instance a temperature at which the shape memory feature of the sleeve is activated. The pin may have a weakened portion, such as a notched portion, at which the pin breaks. The breaking of the pin may be used to drive a firing pin into a primer, to initiate a detonation and/or combustion reaction.
Abstract:
A thruster includes multiple segments of electrically-operated propellant, electrodes for igniting one or a few of the electrically-operated propellant segments at a time, and a propellant feeder for moving further propellant segments into engagement with the electrodes. The segments may be configured to provide equal increments of thrust, or different amounts of thrust. The segments may each include an electrically-operated propellant material surrounded by a sealing material, so as to keep the propellant material away from moisture and other contaminants (and/or the vacuum of space) before each individual segment is to be used. The thruster may be included in any of a variety of flight vehicles, for example in a small satellite such as a CubeSat satellite, for instance having a volume of about 1 liter, and a mass of no more than about 1.33 kg.
Abstract translation:推进器包括多个电动推进剂段,用于一次点燃一个或几个电动推进剂段的电极,以及推进剂供给器,用于将另外的推进剂段移动到与 电极。 这些段可以被配置成提供相等的推力增量或不同的推力量。 这些区段可以各自包括由密封材料围绕的电操作推进剂材料,以便在每个单独的区段将被使用之前使推进剂材料远离湿气和其他污染物(和/或空间的真空)。 推进器可以包括在各种飞行器中的任何一种中,例如在诸如CubeSat卫星的小卫星中,例如具有大约1升的体积和不大于大约1.33kg的质量。 p >
Abstract:
A system includes a structure having a first structural element and a second structural element. The system also includes a latch configured to releasably secure the first structural element to the second structural element. The latch includes first and second portions. The latch also includes a ball lock configured to hold the first and second portions of the latch together when the ball lock is engaged: The ball lock is also configured to allow the first and second portions of the latch to separate when the ball lock is disengaged. The latch further includes a shape memory material member configured to fracture when exposed to an elevated temperature and thereby disengage the ball lock. The shape memory material member could include an elongated structure that is configured to decrease in length when exposed to the elevated temperature. The elongated structure could have at least one notch.
Abstract:
Embodiments of separating apparatuses are generally described herein. Other embodiments may be described and claimed. In an embodiment, a separating apparatus is provided that comprises a pre-strained member formed from a shape memory alloy that is configured to separate upon application of heat.
Abstract:
A control system for a missile includes a plurality of control surfaces that can be arrayed across a surface of the missile body, and a controller connected to the control surfaces to selectively move the control surfaces between an aerodynamic stowed position where the control surfaces conform to the surface of the body, and a deployed control position removed from the aerodynamic stowed position where the control surfaces extend from the surface of the body to interact with airflow over the body. The control surfaces are made of a material that includes a shape-memory alloy. Heating the control surfaces causes the shape-memory alloy to move the control surfaces from the aerodynamic stowed position to the deployed control position. By selectively extending and retracting the control surfaces, the control system provides the ability to control the missile's direction of travel or to reduce roll about a longitudinal axis of the body.
Abstract:
A control system for a missile includes a plurality of control surfaces that can be arrayed across a surface of the missile body, and a controller connected to the control surfaces to selectively move the control surfaces between an aerodynamic stowed position where the control surfaces conform to the surface of the body, and a deployed control position removed from the aerodynamic stowed position where the control surfaces extend from the surface of the body to interact with airflow over the body. The control surfaces are made of a material that includes a shape-memory alloy. Heating the control surfaces causes the shape-memory alloy to move the control surfaces from the aerodynamic stowed position to the deployed control position. By selectively extending and retracting the control surfaces, the control system provides the ability to control the missile's direction of travel or to reduce roll about a longitudinal axis of the body.
Abstract:
A satellite has thrusters that are integral parts of its frame. The frame defines cavities therein where thrusters are located. The thrusters may include an electrically-operated propellant and electrodes to activate combustion in the electrically-operated propellant. The frame may be additively manufactured, and the propellant and/or the electrodes may also be additively manufactured, with the frame and the propellant and/or the electrodes also being manufactured in a single process. In addition the thrusters may have nozzle portions through which combustion gases exit the thrusters. The thrusters may be located at corners and/or along edges of the frame, and may be used to accomplish any of a variety of maneuvers for the satellite. The satellite may be a small satellite, such as a CubeSat satellite, for instance having a volume of about 1 liter, and a mass of no more than about 1.33 kg.
Abstract:
A release mechanism includes a frame with an interior. The release mechanism also includes a prestrained element coupled to the interior of the frame. The prestrained element creates a seal with the frame. The prestrained element is notched in one or more regions. The prestrained element is configured to fracture when heated to a predetermined temperature allowing the interior to open. The fracture is based on the notched regions of the prestrained element such that separation initiates within the notched regions. The remaining regions of the prestrained element unfractured. The shape memory alloy element can include one or more of a nickel-titanium alloy, a titanium-nickel alloy, a copper-zinc-aluminum alloy, a copper aluminum nickel alloy, and a nickel titanium hafnium alloy. Heating of the shape memory alloy element causes a stress in the shape memory alloy that causes fracturing of the prestrained alloy when sufficient heating has been achieved.