Abstract:
An X-ray imaging device and alignment/scanning system include at least one multilayer X-ray mirror mounted on a multi-axis adjustable mirror mount pivotable about a scanning axis. A mirror scanner is coupled with the mirror mount and synchronized with the X-ray source so that the mirror scanner moves the mirror mount about the scanning axis. The invention may include a plurality of mirrors, optionally in a stack, and preferably including first and second mirrors respectively adapted to reflect X-rays of first and second energies. A movable attenuation plate having a window selectively allows X-rays to be transmitted by one of the mirrors and blocks X-rays from the other mirror(s). Sets of the mirrors may be configured in blocks or interspersed. The mirror scanner may be operable at variable speeds to enable selective control of the scanning speed of the mirror.
Abstract:
An X-ray optical alignment system for X-ray imaging devices includes a visible-light point source and a multi-axis positioner therefor, fixedly mounted with respect to the X-ray focal spot. A mirror or beamsplitter is fixedly mounted with respect to the X-ray focal spot and disposed in the beam path of the X-ray source. The beamsplitter reflects light emitted from the light source and transmits X-rays emitted from the X-ray source. A first X-ray attenuating grid is fixedly but removably mountable with respect to the X-ray source, having a first X-ray attenuation pattern; and a second X-ray attenuating grid is adjustably mountable with respect to the first grid having a second X-ray attenuating pattern corresponding to the first X-ray attenuating pattern. When the grids are aligned, their attenuating patterns are also aligned and allow X-rays from the X-ray source and light reflected from the beamsplitter to pass therethrough.
Abstract:
An X-ray imaging device and alignment/scanning system include at least one multilayer X-ray mirror mounted on a multi-axis adjustable mirror mount pivotable about a scanning axis. A mirror scanner is coupled with the mirror mount and synchronized with the X-ray source so that the mirror scanner moves the mirror mount about the scanning axis. The invention may include a plurality of mirrors, optionally in a stack, and preferably including first and second mirrors respectively adapted to reflect X-rays of first and second energies. A movable attenuation plate having a window selectively allows X-rays to be transmitted by one of the mirrors and blocks X-rays from the other mirror(s). Sets of the mirrors may be configured in blocks or interspersed. The mirror scanner may be operable at variable speeds to enable selective control of the scanning speed of the mirror.
Abstract:
An X-ray optical alignment system for X-ray imaging devices includes a visible-light point source and a multi-axis positioner therefor, fixedly mounted with respect to the X-ray focal spot. A mirror or beamsplitter is fixedly mounted with respect to the X-ray focal spot and disposed in the beam path of the X-ray source. The beamsplitter reflects light emitted from the light source and transmits X-rays emitted from the X-ray source. A first X-ray attenuating grid is fixedly but removably mountable with respect to the X-ray source, having a first X-ray attenuation pattern; and a second X-ray attenuating grid is adjustably mountable with respect to the first grid having a second X-ray attenuating pattern corresponding to the first X-ray attenuating pattern. When the grids are aligned, their attenuating patterns are also aligned and allow X-rays from the X-ray source and light reflected from the beamsplitter to pass therethrough.
Abstract:
An X-ray imaging device and alignment/scanning system include at least one multilayer X-ray mirror mounted on a multi-axis adjustable mirror mount pivotable about a scanning axis. A mirror scanner is coupled with the mirror mount and synchronized with the X-ray source so that the mirror scanner moves the mirror mount about the scanning axis. The invention may include a plurality of mirrors, optionally in a stack, and preferably including first and second mirrors respectively adapted to reflect X-rays of first and second energies. A movable attenuation plate having a window selectively allows X-rays to be transmitted by one of the mirrors and blocks X-rays from the other mirror(s). Sets of the mirrors may be configured in blocks or interspersed. The mirror scanner may be operable at variable speeds to enable selective control of the scanning speed of the mirror.
Abstract:
An X-ray optical alignment system for X-ray imaging devices includes a visible-light point source and a multi-axis positioner therefor, fixedly mounted with respect to the X-ray focal spot. A mirror or beamsplitter is fixedly mounted with respect to the X-ray focal spot and disposed in the beam path of the X-ray source. The beamsplitter reflects light emitted from the light source and transmits X-rays emitted from the X-ray source. A first X-ray attenuating grid is fixedly but removably mountable with respect to the X-ray source, having a first X-ray attenuation pattern; and a second X-ray attenuating grid is adjustably mountable with respect to the first grid having a second X-ray attenuating pattern corresponding to the first X-ray attenuating pattern. When the grids are aligned, their attenuating patterns are also aligned and allow X-rays from the X-ray source and light reflected from the beamsplitter to pass therethrough.
Abstract:
An X-ray imaging device and alignment/scanning system include at least one multilayer X-ray mirror mounted on a multi-axis adjustable mirror mount pivotable about a scanning axis. A mirror scanner is coupled with the mirror mount and synchronized with the X-ray source so that the mirror scanner moves the mirror mount about the scanning axis. The invention may include a plurality of mirrors, optionally in a stack, and preferably including first and second mirrors respectively adapted to reflect X-rays of first and second energies. A movable attenuation plate having a window selectively allows X-rays to be transmitted by one of the mirrors and blocks X-rays from the other mirror(s). Sets of the mirrors may be configured in blocks or interspersed. The mirror scanner may be operable at variable speeds to enable selective control of the scanning speed of the mirror.
Abstract:
An X-ray optical alignment system for X-ray imaging devices includes a visible-light point source and a multi-axis positioner therefor, fixedly mounted with respect to the X-ray focal spot. A mirror or beamsplitter is fixedly mounted with respect to the X-ray focal spot and disposed in the beam path of the X-ray source. The beamsplitter reflects light emitted from the light source and transmits X-rays emitted from the X-ray source. A first X-ray attenuating grid is fixedly but removably mountable with respect to the X-ray source, having a first X-ray attenuation pattern; and a second X-ray attenuating grid is adjustably mountable with respect to the first grid having a second X-ray attenuating pattern corresponding to the first X-ray attenuating pattern. When the grids are aligned, their attenuating patterns are also aligned and allow X-rays from the X-ray source and light reflected from the beamsplitter to pass therethrough.
Abstract:
An X-ray optical alignment system for X-ray imaging devices includes a visible-light point source and a multi-axis positioner therefor, fixedly mounted with respect to the X-ray focal spot. A mirror or beamsplitter is fixedly mounted with respect to the X-ray focal spot and disposed in the beam path of the X-ray source. The beamsplitter reflects light emitted from the light source and transmits X-rays emitted from the X-ray source. A first X-ray attenuating grid is fixedly but removably mountable with respect to the X-ray source, having a first X-ray attenuation pattern; and a second X-ray attenuating grid is adjustably mountable with respect to the first grid having a second X-ray attenuating pattern corresponding to the first X-ray attenuating pattern. When the grids are aligned, their attenuating patterns are also aligned and allow X-rays from the X-ray source and light reflected from the beamsplitter to pass therethrough.